ﻻ يوجد ملخص باللغة العربية
While ab initio many-body techniques have been able to successfully describe the properties of light and intermediate mass nuclei based on chiral effective field theory interactions, neutron-rich nuclei still remain out of reach for these methods. Conversely, energy density functional approaches can be used to calculate properties of heavy nuclei but rely mostly on phenomenological interactions. A usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces was presented recently. The first component of this new set of functionals corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. The exchange term, which is a functional of the non-local density, is transformed into a local functional by applying the density matrix expansion. In order to reduce the computational cost due to the direct implementation of non-separable, local interactions in the Hartree term, we use an approximation to represent the regularized Yukawa functions in terms of a sum of (separable) Gaussian functions. These proceedings analyze the accuracy of such an approximation in terms of the number of Gaussian functions and look for an optimal value that gives an acceptable level of accuracy while maintaining the computational memory requirements in a many-body calculation as low as possible.
We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective
Nuclear density functional theory is the prevalent theoretical framework for accurately describing nuclear properties at the scale of the entire chart of nuclides. Given an energy functional and a many-body scheme (e.g., single- or multireference lev
Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra and transition rates in fourteen isotopic chains: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu, Cm, Cf, and Fm, are systematically analyzed using a theoretical framework
We introduce a finite-range pseudopotential built as an expansion in derivatives up to next-to-next-to-next-to-leading order (N$^3$LO) and we calculate the corresponding nonlocal energy density functional (EDF). The coupling constants of the nonlocal
Parametric correlations are studied in several classes of covariant density functional theories (CDFTs) using a statistical analysis in a large parameter hyperspace. In the present manuscript, we investigate such correlations for two specific types o