ﻻ يوجد ملخص باللغة العربية
Defects, and in particular topological defects, are architectural motifs that play a crucial role in natural materials. Here we provide a systematic strategy to introduce such defects in mechanical metamaterials. We first present metamaterials that are a mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, then design an exponential number of frustration-free metamaterials, and finally introduce topological defects by rotating a string of building blocks in these metamaterials. We uncover the distinct mechanical signature of topological defects by experiments and simulations, and leverage this to design complex metamaterials in which we can steer deformations and stresses towards parts of the system. Our work presents a new avenue to systematically include spatial complexity, frustration, and topology in mechanical metamaterials.
Monolayers of anisotropic cells exhibit long-ranged orientational order and topological defects. During the development of organisms, orientational order often influences morphogenetic events. However, the linkage between the mechanics of cell monola
Topological mechanics can realize soft modes in mechanical metamaterials in which the number of degrees of freedom for particle motion is finely balanced by the constraints provided by interparticle interactions. However, solid objects are generally
In developing organisms, internal cellular processes generate mechanical stresses at the tissue scale. The resulting deformations depend on the material properties of the tissue, which can exhibit long-ranged orientational order and topological defec
We establish non-Hermitian topological mechanics in one dimensional (1D) and two dimensional (2D) lattices consisting of mass points connected by meta-beams that lead to odd elasticity. Extended from the non-Hermitian skin effect in 1D systems, we de
Nonzero weak topological indices are thought to be a necessary condition to bind a single helical mode to lattice dislocations. In this work we show that higher-order topological insulators (HOTIs) can, in fact, host a single helical mode along screw