ترغب بنشر مسار تعليمي؟ اضغط هنا

Interaction of carrier envelope phase-stable laser pulses with graphene: the transition from the weak-field to the strong-field regime

354   0   0.0 ( 0 )
 نشر من قبل Christian Heide
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrafast control of electron dynamics in solid state systems has recently found particular attention. By increasing the electric field strength of laser pulses, the light-matter interaction in solids might turn from a perturbative into a novel non-perturbative regime, where interband transitions from the valence to the conduction band become strongly affected by intraband motion. We have demonstrated experimentally and numerically that this combined dynamics can be controlled in graphene with the electric field waveform of phase-stabilized few-cycle laser pulses. Here we show new experimental data and matching simulation results at comparably low optical fields, which allows us to focus on the highly interesting transition regime where the light-matter interaction turns from perturbative to non-perturbative. We find a 5th order power-law scaling of the laser induced waveform-dependent current at low optical fields, which breaks down for higher optical fields, indicating the transition.



قيم البحث

اقرأ أيضاً

Sharp metallic nanotapers irradiated with few-cycle laser pulses are emerging as a source of highly confined coherent electron wavepackets with attosecond duration and strong directivity. The possibility to steer, control or switch such electron wave packets by light is expected to pave the way towards direct visualization of nanoplasmonic field dynamics and real-time probing of electron motion in solid state nanostructures. Such pulses can be generated by strong-field induced tunneling and acceleration of electrons in the near-field of sharp gold tapers within one half-cycle of the driving laser field. Here, we show the effect of the carrier-envelope phase of the laser field on the generation and motion of strong-field emitted electrons from such tips. This is a step forward towards controlling the coherent electron motion in and around metallic nanostructures on ultrashort length and time scales.
The availability of few-cycle optical pulses opens a window to physical phenomena occurring on the attosecond time scale. In order to take full advantage of such pulses, it is crucial to measure and stabilise their carrier-envelope (CE) phase, i.e., the phase difference between the carrier wave and the envelope function. We introduce a novel approach to determine the CE phase by down-conversion of the laser light to the terahertz (THz) frequency range via plasma generation in ambient air, an isotropic medium where optical rectification (down-conversion) in the forward direction is only possible if the inversion symmetry is broken by electrical or optical means. We show that few-cycle pulses directly produce a spatial charge asymmetry in the plasma. The asymmetry, associated with THz emission, depends on the CE phase, which allows for a determination of the phase by measurement of the amplitude and polarity of the THz pulse.
We present a joint experimental-theoretical study on the effect of the carrier-envelope phase (CEP) of a few-cycle pulse on the atomic excitation process. We focus on the excitation rates of argon as a function of CEP in the intensity range from 50-3 00 TW/cm$^2$, which covers the transition between the multiphoton and tunneling regimes. Through numerical simulations based on solving the time-dependent Schr{o}dinger equation (TDSE), we show that the resulting bound-state population is highly sensitive to both the intensity and the CEP. Because the intensity varies over the interaction region, the CEP effect is considerably reduced in the experiment. Nevertheless, the data clearly agree with the theoretical prediction, and the results encourage the use of precisely tailored laser fields to coherently control the strong-field excitation process. We find a markedly different behavior for the CEP-dependent bound-state population at low and high intensities with a clear boundary, which we attribute to the transition from the multiphoton to the tunneling regime.
The impacts of the carrier-envelope phase (CEP) of a long relativistic tightly-focused laser pulse on the dynamics of a counter-propagating electron beam have been investigated in the, so-called, electron reflection regime, requiring the Lorentz fact or of the electron $gamma$ to be approximately two orders of magnitudes lower than the dimensionless laser field parameter $xi$. The electrons are reflected at the rising edge of the laser pulse due to the ponderomotive force of the focused laser beam, and an asymmetric electron angular distribution emerges along the laser polarization direction, which sensitively depends on the CEP of the driving laser pulse for weak radiative stochastic effects. The CEP siganatures are observable at laser intensities of the order or larger than $10^{19}$ W/cm$^2$ and the pulse duration up to 10 cycles. The CEP detection resolution is proportional to the electron beam density and can achieve approximately $0.1^{circ}$ at an electron density of about $10^{15}$ cm$^{-3}$. The method is applicable for currently available ultraintense laser facilities with the laser peak power from tens of terawatt to multi-petawatt region.
The impact of the carrier-envelope phase (CEP) of an intense multi-cycle laser pulse on the radiation of an electron beam during nonlinear Compton scattering is investigated. An interaction regime of the electron beam counterpropagating to the laser pulse is employed, when pronounced high-energy x-ray double peaks emerge at different angles near the backward direction relative to the initial electron motion. This is achieved in the relativistic interaction domain, with the additional requirements that the electron energy is much lower than that necessary for the electron reflection condition at the laser peak, and the stochasticity effects in the photon emission are weak. The asymmetry parameter of the double peaks in the angular radiation distribution is shown to serve as a sensitive and uniform measure for the CEP of the laser pulse. The method demonstrates unprecedented sensitivity to subtle CEP-effects up to 10-cycle laser pulses and can be applied for the characterization of extremely strong laser pulses in present and near future laser facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا