Janossy densities for chiral random matrix ensembles and their applications to two-color QCD


الملخص بالإنكليزية

We compute individual distributions of low-lying eigenvalues of massive chiral random matrix ensembles by the Nystrom-type quadrature method for evaluating the Fredholm determinant and Pfaffian that represent the analytic continuation of the Janossy densities (conditional gap probabilities). A compact formula for individual eigenvalue distributions suited for precise numerical evaluation by the Nystrom-type method is obtained in an explicit form, and the $k^{rm{small th}}$ smallest eigenvalue distributions are numerically evaluated for chiral unitary and symplectic ensembles in the microscopic limit. As an application of our result, the low-lying Dirac spectra of the SU(2) lattice gauge theory with $N_F=8$ staggered flavors are fitted to the numerical prediction from the chiral symplectic ensemble, leading to a precise determination of the chiral condensateof a two-color QCD-like system in the future.

تحميل البحث