ﻻ يوجد ملخص باللغة العربية
Latest precise cosmic-ray (CR) measurements and present gamma-ray observations have started challenging our understanding of CR transport and interaction in the Galaxy. Moreover, because the density of CRs is similar to the density of the magnetic field, gas, and starlight in the interstellar medium (ISM), CRs are expected to affect the ISM dynamics, including the physical and chemical processes that determine transport and star formation. In this context, observations of gamma-ray emission at MeV energies produced by the low-energy CRs are very important and urgent. A telescope covering the energy range between ~0.1 MeV and a few GeV with a sensitivity more than an order of magnitude better than previous instruments would allow for the first time to study in detail the low-energy CRs, providing information on their sources, their spectra throughout the Galaxy, their abundances, transport properties, and their role on the evolution of the Galaxy and star formation. Here we discuss the scientific prospects for studies of CRs, ISM (gas, interstellar photons, and magnetic fields) and associated gamma-ray emissions with such an instrument.
An accurate estimate of the interstellar gas density distribution is crucial to understanding the interstellar medium (ISM) and Galactic cosmic rays (CRs). To comprehend the ISM and CRs in a local environment, a study of the diffuse $gamma$-ray emiss
Secondary nuclear production physics is receiving increased attention given the high-quality measurements of the gamma-ray emissivity of local interstellar gas between ~50 MeV and ~40 GeV, obtained with the Large Area Telescope on board the Fermi spa
We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clus
We review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of $sim$2000 yr, focusing in particular on RX J1713.7$-$3946 and RCW 86. Both SNRs
In the past few years, gamma-ray astronomy has entered a golden age. At TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes has increased this number to