ﻻ يوجد ملخص باللغة العربية
The $4pi$-periodic Josephson effect is an indicator of Majorana zero modes and a ground-state degeneracy which are central to topological quantum computation. However, the observability of a $4pi$-periodic Josephson current-phase relation (CPR) is hindered by the necessity to fix the fermionic parity. As an alternative to a $4pi$-periodic CPR, this paper proposes a chiral CPR for the $4pi$-periodic Josephson effect. This is a CPR of the form $J(phi) propto C , |sin(phi/2)|$, describing a unidirectional supercurrent with the chirality $C= pm 1$. Its non-analytic dependence on the Josephson phase difference $phi$ translates into the $4pi$-periodic CPR $J(phi) propto sin(phi/2)$. The proposal requires a spin-polarized topological Josephson junction which is modeled here as a short link between spin-split superconducting channels at the edge of a two-dimensional topological insulator. In this case, $C$ coincides with the Chern number of the occupied spin band of the topological insulator. The paper details three scenarios of achieving a chiral CPR: By only Zeeman-like splitting, by Zeeman splitting combined with bias currents, and by an external out-of-plane magnetic field.
Topological superconductivity holds promise for fault-tolerant quantum computing. While planar Josephson junctions are attractive candidates to realize this exotic state, direct phase-measurements as the fingerprint of the topological transition are
The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to vari
Josephson junctions with topological insulator weak links can host low energy Andreev bound states giving rise to a current phase relation that deviates from sinusoidal behaviour. Of particular interest are zero energy Majorana bound states that form
The Josephson energy of two superconducting islands containing Majorana fermions is a 4pi-periodic function of the superconducting phase difference. If the islands have a small capacitance, their ground state energy is governed by the competition of
Recently, much research has been dedicated to understanding topological superconductivity and Majorana zero modes induced by a magnetic field in hybrid proximity structures. This paper proposes a realization of topological superconductivity in a shor