ﻻ يوجد ملخص باللغة العربية
Tight constraints on the abundance of primordial black holes can be deduced across a vast range of masses, with the exception of those light enough to fully evaporate before nucleosynthesis. This hypothetical population is almost entirely unconstrained, to the point where the early Universe could pass through a matter-dominated phase with primordial black holes as the primary component. The only obvious relic of this phase would be Hawking radiated gravitons which would constitute a stochastic gravitational wave background in the present-day Universe, albeit at frequencies far beyond the scope of any planned detector technology. This paper explores the effects of classical mergers in such a matter dominated phase. For certain ranges of parameters, a significant fraction of the black holes merge, providing an additional, classical source of primordial gravitational waves. The resulting stochastic background typically has a lower amplitude than the Hawking background and lies at less extreme frequencies, but is unlikely to be easily detectable, with a maximal present day density of $Omega_{GW} sim 10^{-12}$ and frequencies between $10^{15} - 10^{19}$ Hz. We also asses the impact of radiation accretion on the lifetimes of such primordial black holes and find that it increases the black hole mass by $sim 14 %$ and the lifetimes by about $50 %$. However, this does not qualitatively change any of our conclusions.
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures
Recent observational constraints indicate that primordial black holes (PBHs) with the mass scale $sim 10^{-12}M_{odot}$ can explain most of dark matter in the Universe. To produce this kind of PBHs, we need an enhance in the primordial scalar curvatu
We present a new realization of the resonant production of primordial black holes as well as gravitational waves in a two-stage inflation model consisting of a scalar field phi with an axion-monodromy-like periodic structure in the potential that gov
Primordial black hole (PBH) mergers have been proposed as an explanation for the gravitational wave events detected by the LIGO collaboration. Such PBHs may be formed in the early Universe as a result of the collapse of extremely rare high-sigma peak
The next generation of space-borne gravitational wave detectors may detect gravitational waves from extreme mass-ratio inspirals with primordial black holes. To produce primordial black holes which contribute a non-negligible abundance of dark matter