ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation and Inference for High Dimensional Generalized Linear Models: A Splitting and Smoothing Approach

121   0   0.0 ( 0 )
 نشر من قبل Zhe Fei
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Zhe Fei - Yi Li




اسأل ChatGPT حول البحث

The focus of modern biomedical studies has gradually shifted to explanation and estimation of joint effects of high dimensional predictors on disease risks. Quantifying uncertainty in these estimates may provide valuable insight into prevention strategies or treatment decisions for both patients and physicians. High dimensional inference, including confidence intervals and hypothesis testing, has sparked much interest. While much work has been done in the linear regression setting, there is lack of literature on inference for high dimensional generalized linear models. We propose a novel and computationally feasible method, which accommodates a variety of outcome types, including normal, binomial, and Poisson data. We use a splitting and smoothing approach, which splits samples into two parts, performs variable selection using one part and conducts partial regression with the other part. Averaging the estimates over multiple random splits, we obtain the smoothed estimates, which are numerically stable. We show that the estimates are consistent, asymptotically normal, and construct confidence intervals with proper coverage probabilities for all predictors. We examine the finite sample performance of our method by comparing it with the existing methods and applying it to analyze a lung cancer cohort study.



قيم البحث

اقرأ أيضاً

204 - Sai Li , Tony T. Cai , Hongzhe Li 2019
Linear mixed-effects models are widely used in analyzing clustered or repeated measures data. We propose a quasi-likelihood approach for estimation and inference of the unknown parameters in linear mixed-effects models with high-dimensional fixed eff ects. The proposed method is applicable to general settings where the dimension of the random effects and the cluster sizes are possibly large. Regarding the fixed effects, we provide rate optimal estimators and valid inference procedures that do not rely on the structural information of the variance components. We also study the estimation of variance components with high-dimensional fixed effects in general settings. The algorithms are easy to implement and computationally fast. The proposed methods are assessed in various simulation settings and are applied to a real study regarding the associations between body mass index and genetic polymorphic markers in a heterogeneous stock mice population.
152 - Song Xi Chen , Bin Guo 2014
We consider testing regression coefficients in high dimensional generalized linear models. An investigation of the test of Goeman et al. (2011) is conducted, which reveals that if the inverse of the link function is unbounded, the high dimensionality in the covariates can impose adverse impacts on the power of the test. We propose a test formation which can avoid the adverse impact of the high dimensionality. When the inverse of the link function is bounded such as the logistic or probit regression, the proposed test is as good as Goeman et al. (2011)s test. The proposed tests provide p-values for testing significance for gene-sets as demonstrated in a case study on an acute lymphoblastic leukemia dataset.
There are many scenarios such as the electronic health records where the outcome is much more difficult to collect than the covariates. In this paper, we consider the linear regression problem with such a data structure under the high dimensionality. Our goal is to investigate when and how the unlabeled data can be exploited to improve the estimation and inference of the regression parameters in linear models, especially in light of the fact that such linear models may be misspecified in data analysis. In particular, we address the following two important questions. (1) Can we use the labeled data as well as the unlabeled data to construct a semi-supervised estimator such that its convergence rate is faster than the supervised estimators? (2) Can we construct confidence intervals or hypothesis tests that are guaranteed to be more efficient or powerful than the supervised estimators? To address the first question, we establish the minimax lower bound for parameter estimation in the semi-supervised setting. We show that the upper bound from the supervised estimators that only use the labeled data cannot attain this lower bound. We close this gap by proposing a new semi-supervised estimator which attains the lower bound. To address the second question, based on our proposed semi-supervised estimator, we propose two additional estimators for semi-supervised inference, the efficient estimator and the safe estimator. The former is fully efficient if the unknown conditional mean function is estimated consistently, but may not be more efficient than the supervised approach otherwise. The latter usually does not aim to provide fully efficient inference, but is guaranteed to be no worse than the supervised approach, no matter whether the linear model is correctly specified or the conditional mean function is consistently estimated.
195 - Mengyan Li , Runze Li , Yanyuan Ma 2020
For a high-dimensional linear model with a finite number of covariates measured with error, we study statistical inference on the parameters associated with the error-prone covariates, and propose a new corrected decorrelated score test and the corre sponding one-step estimator. We further establish asymptotic properties of the newly proposed test statistic and the one-step estimator. Under local alternatives, we show that the limiting distribution of our corrected decorrelated score test statistic is non-central normal. The finite-sample performance of the proposed inference procedure is examined through simulation studies. We further illustrate the proposed procedure via an empirical analysis of a real data example.
This paper deals with a general class of transformation models that contains many important semiparametric regression models as special cases. It develops a self-induced smoothing for the maximum rank correlation estimator, resulting in simultaneous point and variance estimation. The self-induced smoothing does not require bandwidth selection, yet provides the right amount of smoothness so that the estimator is asymptotically normal with mean zero (unbiased) and variance-covariance matrix consistently estimated by the usual sandwich-type estimator. An iterative algorithm is given for the variance estimation and shown to numerically converge to a consistent limiting variance estimator. The approach is applied to a data set involving survival times of primary biliary cirrhosis patients. Simulations results are reported, showing that the new method performs well under a variety of scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا