ﻻ يوجد ملخص باللغة العربية
The motion of active polymers in a porous medium is shown to depend critically on flexibilty, activity and degree of polymerization. For given Peclet number, we observe a transition from localisation to diffusion as the stiffness of the chains is increased. Whereas stiff chains move almost unhindered through the porous medium, flexible ones spiral and get stuck. Their motion can be accounted for by the model of a continuous time random walk with a renewal process corresponding to unspiraling. The waiting time distribution is shown to develop heavy tails for decreasing stiffness, resulting in subdiffusive and ultimately caged behaviour.
As a typical multiphase fluid flow process, drainage in porous media is of fundamental interest in nature and industrial applications. During drainage processes in unsaturated soils and porous media in general, saturated clusters, in which a liquid p
We perform Brownian dynamics simulations of active stiff polymers undergoing run-reverse dynamics, and so mimic bacterial swimming, in porous media. In accord with recent experiments of emph{Escherichia coli}, the polymer dynamics are characterized b
Porous media with hierarchical structures are commonly encountered in both natural and synthetic materials, e.g., fractured rock formations, porous electrodes and fibrous materials, which generally consist of two or more distinguishable levels of por
Motivated by the swimming of sperm in the non-Newtonian fluids of the female mammalian reproductive tract, we examine the swimming of filaments in the nonlinear viscoelastic Upper Convected Maxwell model. We obtain the swimming velocity and hydrodyna
Imbibition is a commonly encountered multiphase problem in various fields, and exact prediction of imbibition processes is a key issue for better understanding capillary flow in heterogeneous porous media. In this work, a numerical framework for desc