ترغب بنشر مسار تعليمي؟ اضغط هنا

DC spin generation by junctions with AC driven spin-orbit interaction

82   0   0.0 ( 0 )
 نشر من قبل Amnon Aharony
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An unbiased one-dimensional weak link between two terminals, subjected to the Rashba spin-orbit interaction caused by an AC electric field which rotates periodically in the plane perpendicular to the link, is shown to inject spin-polarized electrons into the terminals. The injected spin-polarization has a DC component along the link and a rotating transverse component in the perpendicular plane. In the adiabatic, low rotation-frequency regime, these polarization components are proportional to the frequency. The DC component of the polarization vanishes for a linearly-polarized electric field.



قيم البحث

اقرأ أيضاً

The polarization of the spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant component parallel to the precession axis and a rotating one normal to the magnetization. The former component is now routinely detec ted in the form of a DC voltage induced by the inverse spin Hall effect (ISHE). Here we compute AC-ISHE voltages much larger than the DC signals for various material combinations and discuss optimal conditions to observe the effect. Including the backflow of spins is essential for distilling parameters such as the spin Hall angle from ISHE-detected spin pumping experiments.
Spin torque from spin current applied to a nanoscale region of a ferromagnet can act as negative magnetic damping and thereby excite self-oscillations of its magnetization. In contrast, spin torque uniformly applied to the magnetization of an extende d ferromagnetic film does not generate self-oscillatory magnetic dynamics but leads to reduction of the saturation magnetization. Here we report studies of the effect of spin torque on a system of intermediate dimensionality - a ferromagnetic nanowire. We observe coherent self-oscillations of magnetization in a ferromagnetic nanowire serving as the active region of a spin torque oscillator driven by spin orbit torques. Our work demonstrates that magnetization self-oscillations can be excited in a one-dimensional magnetic system and that dimensions of the active region of spin torque oscillators can be extended beyond the nanometer length scale.
148 - Tatsuhiko N. Ikeda 2019
Manipulating spin currents in magnetic insulators is a key technology in spintronics. We theoretically study a simple inversion-asymmetric model of quantum antiferromagnets, where both the exchange interaction and the magnetic field are staggered. We calculate spin currents generated by external electric and magnetic fields by using a quantum master equation. We show that an ac electric field with amplitude $E_0$ leads, through exchange-interaction modulation, to the dc and second-harmonic spin currents proportional to $E_0^2$. We also show that dc and ac staggered magnetic fields $B_0$ generate the dc and ac spin currents proportional to $B_0$, respectively. We elucidate the mechanism by an exactly solvable model, and thereby propose the ways of spin current manipulation by electromagnetic fields.
Spin torques are at the heart of spin manipulations in spintronic devices. Here, we examine the existence of an optical spin-orbit torque, a relativistic spin torque originating from the spin-orbit coupling of an oscillating applied field with the sp ins. We compare the effect of the nonrelativistic Zeeman torque with the relativistic optical spin-orbit torque for ferromagnetic systems excited by a circularly polarised laser pulse. The latter torque depends on the helicity of the light and scales with the intensity, while being inversely proportional to the frequency. Our results show that the optical spin-orbit torque can provide a torque on the spins, which is quantitatively equivalent to the Zeeman torque. Moreover, temperature dependent calculations show that the effect of optical spin-orbit torque decreases with increasing temperature. However, the effect does not vanish in a ferromagnetic system, even above its Curie temperature.
We study a model of a $p$-$n$ junction in single-layer graphene in the presence of a perpendicular magnetic field and spin-orbit interactions. By solving the relevant quantum-mechanical problem for a potential step, we determine the exact spectrum of spin-resolved dispersive Landau levels. Close to zero energy, we find a pair of linearly dispersing zero modes, which possess a wave-vector-dependent spin polarization and can be regarded as quantum analogous of spinful snake states. We show that the Rashba spin-orbit interaction, in particular, produces a wave vector shift between the dispersions of these modes with observable interference effects. These effects can in principle provide a way to detect the presence of Rashba spin-orbit interaction and measure its strength. Our results suggest that a graphene $p$-$n$ junction in the presence of strong spin-orbit interaction could be used as a building block in a spin field-effect transistor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا