ﻻ يوجد ملخص باللغة العربية
Deep convolutional neural networks (CNNs) are powerful tools for a wide range of vision tasks, but the enormous amount of memory and compute resources required by CNNs pose a challenge in deploying them on constrained devices. Existing compression techniques, while excelling at reducing model sizes, struggle to be computationally friendly. In this paper, we attend to the statistical properties of sparse CNNs and present focused quantization, a novel quantization strategy based on power-of-two values, which exploits the weight distributions after fine-grained pruning. The proposed method dynamically discovers the most effective numerical representation for weights in layers with varying sparsities, significantly reducing model sizes. Multiplications in quantized CNNs are replaced with much cheaper bit-shift operations for efficient inference. Coupled with lossless encoding, we built a compression pipeline that provides CNNs with high compression ratios (CR), low computation cost and minimal loss in accuracy. In ResNet-50, we achieved a 18.08x CR with only 0.24% loss in top-5 accuracy, outperforming existing compression methods. We fully compressed a ResNet-18 and found that it is not only higher in CR and top-5 accuracy, but also more hardware efficient as it requires fewer logic gates to implement when compared to other state-of-the-art quantization methods assuming the same throughput.
Deep Convolutional Sparse Coding (D-CSC) is a framework reminiscent of deep convolutional neural networks (DCNNs), but by omitting the learning of the dictionaries one can more transparently analyse the role of the activation function and its ability
This paper presents a novel network compression framework Kernel Quantization (KQ), targeting to efficiently convert any pre-trained full-precision convolutional neural network (CNN) model into a low-precision version without significant performance
Researches have demonstrated that low bit-width (e.g., INT8) quantization can be employed to accelerate the inference process. It makes the gradient quantization very promising since the backward propagation requires approximately twice more computat
This paper is devoted to establishing $L^2$ approximation properties for deep ReLU convolutional neural networks (CNNs) on two-dimensional space. The analysis is based on a decomposition theorem for convolutional kernels with large spatial size and m
We tackle the problem of producing compact models, maximizing their accuracy for a given model size. A standard solution is to train networks with Quantization Aware Training, where the weights are quantized during training and the gradients approxim