ﻻ يوجد ملخص باللغة العربية
Context. Plutos tenuous nitrogen (N2) atmosphere undergoes strong seasonal effects due to high obliquity and orbital eccentricity, and has been recently (July 2015) observed by the New Horizons spacecraft. Goals are (i) construct a well calibrated record of the seasonal evolution of surface pressure on Pluto and (ii) constrain the structure of the lower atmosphere using a central flash observed in 2015. Method: eleven stellar occultations by Pluto observed between 2002 and 2016 are used to retrieve atmospheric profiles (density, pressure, temperature) between $sim$5 km and $sim$380 km altitude levels (i.e. pressures from about 10 microbar to 10 nanobar). Results: (i) Pressure has suffered a monotonic increase from 1988 to 2016, that is compared to a seasonal volatile transport model, from which tight constraints on a combination of albedo and emissivity of N2 ice are derived; (ii) A central flash observed on 2015 June 29 is consistent with New Horizons REX profiles, provided that (a) large diurnal temperature variations (not expected by current models) occur over Sputnik Planitia and/or (b) hazes with tangential optical depth of about 0.3 are present at 4-7 km altitude levels and/or (c) the nominal REX density values are overestimated by an implausibly large factor of about 20% and/or (d) higher terrains block part of the flash in the Charon facing hemisphere.
Context: Pluto possesses a thin atmosphere, primarily composed of nitrogen, in which the detection of methane has been reported. Aims: The goal is to constrain essential but so far unknown parameters of Plutos atmosphere such as the surface pressur
We analyze two multi-chord stellar occultations by Pluto observed on July 18th, 2012 and May 4th, 2013, and monitored respectively from five and six sites. They provide a total of fifteen light-curves, twelve of them being used for a simultaneous fit
We present results from a multi-chord Pluto stellar occultation observed on 29 June 2015 from New Zealand and Australia. This occurred only two weeks before the NASA New Horizons flyby of the Pluto system and serves as a useful comparison between gro
Haze in Plutos atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Plutos surface at
Combining stellar occultation observations probing Plutos atmosphere from 1988 to 2013 and models of energy balance between Plutos surface and atmosphere, we conclude that Plutos atmosphere does not collapse at any point in its 248-year orbit. The oc