ﻻ يوجد ملخص باللغة العربية
We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate few-shot models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.
Learning knowledge graph embedding from an existing knowledge graph is very important to knowledge graph completion. For a fact $(h,r,t)$ with the head entity $h$ having a relation $r$ with the tail entity $t$, the current approaches aim to learn low
Distance based knowledge graph embedding methods show promising results on link prediction task, on which two topics have been widely studied: one is the ability to handle complex relations, such as N-to-1, 1-to-N and N-to-N, the other is to encode v
Knowledge graph embeddings are now a widely adopted approach to knowledge representation in which entities and relationships are embedded in vector spaces. In this chapter, we introduce the reader to the concept of knowledge graph embeddings by expla
This paper describes our submission for the SemEval 2018 Task 7 shared task on semantic relation extraction and classification in scientific papers. We extend the end-to-end relation extraction model of (Miwa and Bansal) with enhancements such as a c
The ability to capture complex linguistic structures and long-term dependencies among words in the passage is essential for relation extraction (RE) tasks. Graph neural networks (GNNs), one of the means to encode dependency graphs, have been shown to