ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine learning in policy evaluation: new tools for causal inference

67   0   0.0 ( 0 )
 نشر من قبل Karla DiazOrdaz
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

While machine learning (ML) methods have received a lot of attention in recent years, these methods are primarily for prediction. Empirical researchers conducting policy evaluations are, on the other hand, pre-occupied with causal problems, trying to answer counterfactual questions: what would have happened in the absence of a policy? Because these counterfactuals can never be directly observed (described as the fundamental problem of causal inference) prediction tools from the ML literature cannot be readily used for causal inference. In the last decade, major innovations have taken place incorporating supervised ML tools into estimators for causal parameters such as the average treatment effect (ATE). This holds the promise of attenuating model misspecification issues, and increasing of transparency in model selection. One particularly mature strand of the literature include approaches that incorporate supervised ML approaches in the estimation of the ATE of a binary treatment, under the textit{unconfoundedness} and positivity assumptions (also known as exchangeability and overlap assumptions). This article reviews popular supervised machine learning algorithms, including the Super Learner. Then, some specific uses of machine learning for treatment effect estimation are introduced and illustrated, namely (1) to create balance among treated and control groups, (2) to estimate so-called nuisance models (e.g. the propensity score, or conditional expectations of the outcome) in semi-parametric estimators that target causal parameters (e.g. targeted maximum likelihood estimation or the double ML estimator), and (3) the use of machine learning for variable selection in situations with a high number of covariates.



قيم البحث

اقرأ أيضاً

152 - Botao Hao , Xiang Ji , Yaqi Duan 2021
Bootstrapping provides a flexible and effective approach for assessing the quality of batch reinforcement learning, yet its theoretical property is less understood. In this paper, we study the use of bootstrapping in off-policy evaluation (OPE), and in particular, we focus on the fitted Q-evaluation (FQE) that is known to be minimax-optimal in the tabular and linear-model cases. We propose a bootstrapping FQE method for inferring the distribution of the policy evaluation error and show that this method is asymptotically efficient and distributionally consistent for off-policy statistical inference. To overcome the computation limit of bootstrapping, we further adapt a subsampling procedure that improves the runtime by an order of magnitude. We numerically evaluate the bootrapping method in classical RL environments for confidence interval estimation, estimating the variance of off-policy evaluator, and estimating the correlation between multiple off-policy evaluators.
The recent emergence of reinforcement learning has created a demand for robust statistical inference methods for the parameter estimates computed using these algorithms. Existing methods for statistical inference in online learning are restricted to settings involving independently sampled observations, while existing statistical inference methods in reinforcement learning (RL) are limited to the batch setting. The online bootstrap is a flexible and efficient approach for statistical inference in linear stochastic approximation algorithms, but its efficacy in settings involving Markov noise, such as RL, has yet to be explored. In this paper, we study the use of the online bootstrap method for statistical inference in RL. In particular, we focus on the temporal difference (TD) learning and Gradient TD (GTD) learning algorithms, which are themselves special instances of linear stochastic approximation under Markov noise. The method is shown to be distributionally consistent for statistical inference in policy evaluation, and numerical experiments are included to demonstrate the effectiveness of this algorithm at statistical inference tasks across a range of real RL environments.
Inducing causal relationships from observations is a classic problem in machine learning. Most work in causality starts from the premise that the causal variables themselves are observed. However, for AI agents such as robots trying to make sense of their environment, the only observables are low-level variables like pixels in images. To generalize well, an agent must induce high-level variables, particularly those which are causal or are affected by causal variables. A central goal for AI and causality is thus the joint discovery of abstract representations and causal structure. However, we note that existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs which are impossible to manipulate parametrically (e.g., number of nodes, sparsity, causal chain length, etc.). In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them. In order to systematically probe the ability of methods to identify these variables and structures, we design a suite of benchmarking RL environments. We evaluate various representation learning algorithms from the literature and find that explicitly incorporating structure and modularity in models can help causal induction in model-based reinforcement learning.
We consider off-policy evaluation (OPE) in continuous action domains, such as dynamic pricing and personalized dose finding. In OPE, one aims to learn the value under a new policy using historical data generated by a different behavior policy. Most e xisting works on OPE focus on discrete action domains. To handle continuous action space, we develop a brand-new deep jump Q-evaluation method for OPE. The key ingredient of our method lies in adaptively discretizing the action space using deep jump Q-learning. This allows us to apply existing OPE methods in discrete domains to handle continuous actions. Our method is further justified by theoretical results, synthetic and real datasets.
The last decade witnessed the development of algorithms that completely solve the identifiability problem for causal effects in hidden variable causal models associated with directed acyclic graphs. However, much of this machinery remains underutiliz ed in practice owing to the complexity of estimating identifying functionals yielded by these algorithms. In this paper, we provide simple graphical criteria and semiparametric estimators that bridge the gap between identification and estimation for causal effects involving a single treatment and a single outcome. First, we provide influence function based doubly robust estimators that cover a significant subset of hidden variable causal models where the effect is identifiable. We further characterize an important subset of this class for which we demonstrate how to derive the estimator with the lowest asymptotic variance, i.e., one that achieves the semiparametric efficiency bound. Finally, we provide semiparametric estimators for any single treatment causal effect parameter identified via the aforementioned algorithms. The resulting estimators resemble influence function based estimators that are sequentially reweighted, and exhibit a partial double robustness property, provided the parts of the likelihood corresponding to a set of weight models are correctly specified. Our methods are easy to implement and we demonstrate their utility through simulations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا