ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystallographic orientation dependence of work function: Carbon adsorption on Au surfaces

73   0   0.0 ( 0 )
 نشر من قبل Hossein Z. Jooya
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the work function (WF) variation of different Au crystallographic surface orientations with carbon atom adsorption. Ab-initio calculations within density-functional theory are performed on carbon deposited (100), (110), and (111) gold surfaces. The WF behavior with carbon coverage for the different surface orientations is explained by the resultant electron charge density distributions. The dynamics of carbon adsorption at sub-to-one-monolayer (ML) coverage depends on the landscape of the potential energy surfaces. At higher ML coverage, because of adsorption saturation, the WF will have weak surface orientation dependence. This systematic study has consequential bearing on studies of electric-field noise emanating from polycrystalline gold ion-trap electrodes that have been largely employed in microfabricated electrodes.



قيم البحث

اقرأ أيضاً

79 - H.Z. Jooya , K.S. McKay , E. Kim 2018
The variation of the work function upon carbon adsorption on the reconstructed Au(110) surface is measured experimentally and compared to density functional calculations. The adsorption dynamics is simulated with ab-initio molecular dynamics techniqu es. The contribution of various energetically available adsorption sites on the deposition process is analyzed, and the work function behavior with carbon coverage is explained by the resultant electron charge density distributions.
The ability of atomic hydrogen to chemisorb on graphene makes the latter a promising material for hydrogen storage. Based on scanning tunneling microscopy techniques, we report on site-selective adsorption of atomic hydrogen on convexly curved region s of monolayer graphene grown on SiC(0001). This system exhibits an intrinsic curvature owing to the interaction with the substrate. We show that at low coverage hydrogen is found on convex areas of the graphene lattice. No hydrogen is detected on concave regions. These findings are in agreement with theoretical models which suggest that both binding energy and adsorption barrier can be tuned by controlling the local curvature of the graphene lattice. This curvature-dependence combined with the known graphene flexibility may be exploited for storage and controlled release of hydrogen at room temperature making it a valuable candidate for the implementation of hydrogen-storage devices.
129 - G. Mahieu 2012
A pi-conjugated {C}3h-oligomer involving three dithienylethylene branches bridged at the meta positions of a central benzenic core has been synthesized and deposited either on the Si(100) surface or on the HOPG surface. On the silicon surface, scanni ng tunneling microscopy allows the observation of isolated molecules. Conversely, by substituting the thiophene rings of the oligomers with alkyl chains, a spontaneous ordered film is observed on the HOPG surface. As the interaction of the oligomers is different with both surfaces, the utility of the Si(100) surface to characterize individual oligomers prior to their use into a 2D layer is discussed.
It is well known that water inside hydrophobic nano-channels diffuses faster than bulk water. Recent theoretical studies have shown that this enhancement depends on the size of the hydrophobic nanochannels. However, experimental evidence of this depe ndence is lacking. Here, by combining two-dimensional Nuclear Magnetic Resonance (NMR) diffusion-relaxation D-T2eff spectroscopy in the stray field of a superconducting magnet, and Molecular Dynamics (MD) simulations, we analyze the size dependence of water dynamics inside carbon nanotubes (CNTs) of different diameters (1.1 nm to 6.0 nm), in the temperature range of 265K to 305K. Depending on the CNTs diameter, the nanotube water is shown to resolve in two or more tubular components acquiring different self-diffusion coefficients. Most notable, a favourable CNTs diameter range 3.0-4.5 nm is experimentally verified for the first time, in which water molecule dynamics at the centre of the CNTs exhibit distinctly non-Arrhenius behaviour, characterized by ultrafast diffusion and extraordinary fragility, a result of significant importance in the efforts to understand water behaviour in hydrophobic nanochannels.
We show that combined permanent and induced electric dipole interactions of polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as al ignment and orientation cosines - in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا