ﻻ يوجد ملخص باللغة العربية
We have derived relations between full-width-half-maxima and equivalent widths of metallic absorption lines in the spectra of RR~Lyrae stars to estimate new upper limits on the axial equatorial rotational velocities of RR~Lyrae and metal-poor red horizontal branch stars (RHB). We also have derived the variations of RR~Lyrae macroturbulent velocities during the pulsation cycles. In RRab cycles the line widths are dominated by phase-dependent convolutions of axial rotation and macroturbulence, which we designate as V_macrot. The behavior of V_macrot is remarkably uniform among the RRab stars, but the behavior of V_macrot among RRc stars varies strongly from star to star. The RRab stars exhibit an upper limit on V_macrot of 5 +/- 1 km/s with weak evidence of an anti-correlation with T_eff. The RRc minima range from 2 to 12 km/s. The abrupt decline in large rotations with decreasing T_eff at the blue boundary of the instability strip and the apparently smooth continuous variation among the RRab and RHB stars suggests that HB stars gain/lose surface angular momentum on time scales short compared to HB lifetimes. V_macrot values for our metal-poor RHB stars agree well with those derived by Fourier analysis of an independent but less metal-poor sample of Carney et al. (2008); they conform qualitatively to the expectations of Tanner et al. (2013). A general conclusion of our investigation is that surface angular momentum as measured by V_rot*sini is not a reliable indicator of total stellar angular momentum anywhere along the HB.
We present a detailed abundance study of 11 RR Lyrae ab-type variables: AS Vir, BS Aps, CD Vel, DT Hya, RV Oct, TY Gru, UV Oct, V1645 Sgr, WY Ant, XZ Aps, and Z Mic.High resolution and high S/N echelle spectra of these variables were obtained with 2.
We present a new detailed abundance study of field red horizontal branch (RHB) and blue horizontal branch (BHB) non-variable stars. High resolution and high S/N echelle spectra of 11 RHB and 12 BHB were obtained with the McDonald 2.7 m telescope, and
We use the pulsational properties of the RR Lyrae variables in the globular cluster NGC 1851 to obtain detailed constraints of the various sub-stellar populations present along its horizontal branch. On the basis of detailed synthetic horizontal bran
The Optical Gravitational Lensing Experiment (OGLE) is a great source of top-quality photometry of classical pulsators. Collection of variable stars from the fourth part of the project contains more than 38 000 RR Lyrae stars. These stars pulsate mos
We present a new set of horizontal-branch (HB) models computed with the MESA stellar evolution code. The models adopt $alpha$-enhanced cite{ags09} metals mixtures and include the gravitational settling of He. They are used in our HB population synthe