ﻻ يوجد ملخص باللغة العربية
We explore non-adiabatic particle production in a de Sitter universe for a scalar spectator field, by allowing the effective mass $m^2(t)$ of this field and the cosmic time interval between non-adiabatic events to vary stochastically. Two main scenarios are considered depending on the (non-stochastic) mass $M$ of the spectator field: the conformal case with $M^2=2H^2$, and the case of a massless field. We make use of the transfer matrix formalism to parametrize the evolution of the system in terms of the occupation number, and two phases associated with the transfer matrix; these are used to construct the evolution of the spectator field. Assuming short-time interactions approximated by Dirac-delta functions, we numerically track the change of these parameters and the field in all regimes: sub- and super-horizon with weak and strong scattering. In all cases a log-normally distributed field amplitude is observed, and the logarithm of the field amplitude approximately satisfies the properties of a Wiener process outside the horizon. We derive a Fokker-Planck equation for the evolution of the transfer matrix parameters, which allows us to calculate analytically non-trivial distributions and moments in the weak-scattering limit.
We explore non-adiabatic particle production for $N_{rm f}$ coupled scalar fields in a time-dependent background with stochastically varying effective masses, cross-couplings and intervals between interactions. Under the assumption of weak scattering
We calculate the curvature power spectrum sourced by spectator fields that are excited repeatedly and non-adiabatically during inflation. In the absence of detailed information of the nature of spectator field interactions, we consider an ensemble of
In this study, we formulate a systematic way of deriving an effective equation of motion(EoM) for long wavelength modes of a massless scalar field with a general potential $V(phi)$ on de Sitter background, and investigate whether or not the effective
We identify a characteristic pattern in the scalar-induced stochastic gravitational wave background from particle production during inflation. If particle production is sufficiently efficient, the scalar power spectrum exhibits $mathcal{O}(1)$ oscill
We derive a noncovariant but simple representation for the self-energy of a conformally transformed graviton field on the cosmological patch of de Sitter. Our representation involves four structure functions, as opposed to the two that would be neces