ﻻ يوجد ملخص باللغة العربية
We present a novel anytime heuristic (ALMA), inspired by the human principle of altruism, for solving the assignment problem. ALMA is decentralized, completely uncoupled, and requires no communication between the participants. We prove an upper bound on the convergence speed that is polynomial in the desired number of resources and competing agents per resource; crucially, in the realistic case where the aforementioned quantities are bounded independently of the total number of agents/resources, the convergence time remains constant as the total problem size increases. We have evaluated ALMA under three test cases: (i) an anti-coordination scenario where agents with similar preferences compete over the same set of actions, (ii) a resource allocation scenario in an urban environment, under a constant-time constraint, and finally, (iii) an on-line matching scenario using real passenger-taxi data. In all of the cases, ALMA was able to reach high social welfare, while being orders of magnitude faster than the centralized, optimal algorithm. The latter allows our algorithm to scale to realistic scenarios with hundreds of thousands of agents, e.g., vehicle coordination in urban environments.
The Coalition Formation with Spatial and Temporal constraints Problem (CFSTP) is a multi-agent task scheduling problem where the tasks are spatially distributed, with deadlines and workloads, and the number of agents is typically much smaller than th
Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework for coordinating interactions in cooperative multi-agent systems. In classical DCOPs, variables owned by agents are assumed to be discrete. However, in many applicati
When it comes to large-scale multi-agent systems with a diverse set of agents, traditional differential privacy (DP) mechanisms are ill-matched because they consider a very broad class of adversaries, and they protect all users, independent of their
Multi-function swarms are swarms that solve multiple tasks at once. For example, a quadcopter swarm could be tasked with exploring an area of interest while simultaneously functioning as ad-hoc relays. With this type of multi-function comes the chall
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc. These practical problems usually exhibit two distinct features: large-scale and dynamic, which requires the matching algor