ﻻ يوجد ملخص باللغة العربية
Ultrafast dynamics in chemical systems provide a unique access to fundamental processes at the molecular scale. A proper description of such systems is often very challenging because of the quantum nature of the problem. The concept of matrix product states (MPS), however, has proven its performance in describing such correlated quantum system in recent years for a wide range of applications. In this work, we continue the development of the MPS approach to study ultrafast electron dynamics in quantum chemical systems. The method combines time evolution schemes, such as fourth-order Runge-Kutta and Krylov space time evolution, with MPS, in order to solve the time-dependent Schrodinger equation efficiently. This allows for describing electron dynamics in molecules on a full configurational interaction (CI) level for a few femtoseconds after excitation. As a benchmark, we compare MPS based calculations to full CI calculations for a chain of hydrogen atoms and for the water molecule. Krylov space time evolution is in particular suited for the MPS approach, as it provides a wide range of opportunities to be adjusted to the reduced MPS dimension case. Finally, we apply the MPS approach to describe charge migration effects in iodoacetylene and find direct agreement between our results and experimental observations.
Fanpy is a free and open-source Python library for developing and testing multideterminant wavefunctions and related ab initio methods in electronic structure theory. The main use of Fanpy is to quickly prototype new methods by making it easier to tr
Ultra-short pulses propagating in nonlinear nanophotonic waveguides can simultaneously leverage both temporal and spatial field confinement, promising a route towards single-photon nonlinearities in an all-photonic platform. In this multimode quantum
Matrix product state has become the algorithm of choice when studying one-dimensional interacting quantum many-body systems, which demonstrates to be able to explore the most relevant portion of the exponentially large quantum Hilbert space and find
Ab initio molecular dynamics (AIMD) is a valuable technique for studying molecules and materials at finite temperatures where the nuclei evolve on potential energy surfaces obtained from accurate electronic structure calculations. In this work, a qua
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise an