ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray spectroscopy of the candidate AGN in Henize 2-10 and NGC 4178: Likely supernova remnants

66   0   0.0 ( 0 )
 نشر من قبل Pavan R. Hebbar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black holes in dwarf/bulgeless galaxies play a crucial role in studying the co-evolution of galaxies and their central black holes. Identifying massive black holes in dwarf galaxies suggests that the growth of black holes could precede that of galaxies. However, some of the most intriguing candidate active galactic nuclei (AGN) in small galaxies have such low luminosities that the sample is vulnerable to contamination by other sources, such as supernova remnants. We re-analysed Chandra X-ray Observatory observations of candidate AGN in Henize 2-10 and NGC 4178, considering the potential signals of emission lines in the minimally-binned X-ray spectra. We find that hot plasma models, which are typical of supernova remnants, explain the observed spectra much better than simple power-law models, which are appropriate for AGN. We identify clear signals of X-ray lines in the faint X-ray source identified with the radio source in Henize 2-10 by Reines et al. 2016. Combining our work with the MUSE measurement of the ionization parameter in this region by Cresci et al. 2017 indicates that this radio and X-ray source is more likely a supernova remnant than an AGN. A similar analysis of the low-count X-ray spectrum of a candidate AGN in NGC 4178 shows that a hot plasma model is about seventeen times more probable than a simple power-law model. Our results indicate that investigation of X-ray spectra, even in a low-count regime, can be a crucial tool to identify thermally-dominated supernova remnants among AGN candidates.



قيم البحث

اقرأ أيضاً

We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2-10. Recent observations suggest that this galaxy hosts an actively accreting black hole with mass ~10^6 M_sun. The presence of an AGN in a low-mass starburst galaxy marks a new environment for active galactic nuclei (AGNs), with implications for the processes by which seed black holes may form in the early Universe. In this paper, we analyze four epochs of X-ray observations of Henize 2-10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on detailed analysis of the source and background, we find that the hard (2-10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs.
188 - Jacco Vink 2011
Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations ar e an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.
Chandra X-ray imaging spectroscopy of the starburst galaxy Henize 2-10 reveals a strong nuclear point source and at least two fainter compact sources embedded within a more luminous diffuse thermal component. Spectral fits to the nuclear X-ray source imply an unabsorbed X-ray luminosity L_x >10^40 erg/s for reasonable power law or blackbody models, consistent with accretion onto a >50 solar mass black hole behind a foreground absorbing column of N_H>10^23 /cm^2. Two of these point sources have L_x=2-5 x 10^38 erg/s, comparable to luminous X-ray binaries. These compact sources constitute a small fraction (<16%) of the total X-ray flux from He~2-10 in the 0.3--6.0 keV band and just 31% of the X-rays in the hard 1.1--6.0 keV band which is dominated by diffuse emission. Two-temperature solar-composition plasmas (kT~0.2 keV and kT~0.7 keV) fit the diffuse X-ray component as well as single-temperature plasmas with enhanced alpha/Fe ratios. Since the observed radial gradient of the X-ray surface brightness closely follows that of the Halpha emission, the composition of the X-ray plasma likely reflects mixing of the ambient cool/warm ISM with an even hotter, low emission measure plasma, thereby explaining the ~solar ISM composition. Aperture synthesis 21-cm maps show an extended neutral medium to radii of 60 so that the warm and hot phases of the ISM, which extend to ~30, are enveloped within the 8x10^20 /cm^2 contour of the cool neutral medium. This extended neutral halo may serve to inhibit a starburst-driven outflow unless it is predominantly along the line of sight. The high areal density of star formation can also be reconciled with the lack of prominent outflow signatures if Henize 2-10 is in the very early stages of developing a galactic wind.
The material expelled by core-collapse supernova (SN) explosions absorbs X-rays from the central regions. We use SN models based on three-dimensional neutrino-driven explosions to estimate optical depths to the center of the explosion, compare differ ent progenitor models, and investigate the effects of explosion asymmetries. The optical depths below 2 keV for progenitors with a remaining hydrogen envelope are expected to be high during the first century after the explosion due to photoabsorption. A typical optical depth is $100 t_4^{-2} E^{-2}$, where $t_4$ is the time since the explosion in units of 10 000 days (${sim}$27 years) and $E$ the energy in units of keV. Compton scattering dominates above 50 keV, but the scattering depth is lower and reaches unity already at ${sim}$1000 days at 1 MeV. The optical depths are approximately an order of magnitude lower for hydrogen-stripped progenitors. The metallicity of the SN ejecta is much higher than in the interstellar medium, which enhances photoabsorption and makes absorption edges stronger. These results are applicable to young SN remnants in general, but we explore the effects on observations of SN 1987A and the compact object in Cas A in detail. For SN 1987A, the absorption is high and the X-ray upper limits of ${sim}$100 Lsun on a compact object are approximately an order of magnitude less constraining than previous estimates using other absorption models. The details are presented in an accompanying paper. For the central compact object in Cas A, we find no significant effects of our more detailed absorption model on the inferred surface temperature.
We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the LMC. Using primarily XMM-Newton, we conduct a systematic spectral analysis of LMC SNRs to gain new insights on their evolution and the interplay with their h ost galaxy. We combined all the archival XMM observations of the LMC with those of our Very Large Programme survey. We produced X-ray images and spectra of 51 SNRs, out of a list of 59. Using a careful modelling of the background, we consistently analysed all the X-ray spectra and measure temperatures, luminosities, and chemical compositions. We investigated the spatial distribution of SNRs in the LMC and the connection with their environment, characterised by various SFHs. We tentatively typed all LMC SNRs to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We compared the X-ray-derived column densities to HI maps to probe the three-dimensional structure of the LMC. This work provides the first homogeneous catalogue of X-ray spectral properties of LMC SNRs. It offers a complete census of LMC SNRs exhibiting Fe K lines (13% of the sample), or revealing contribution from hot SN ejecta (39%). Abundances in the LMC ISM are found to be 0.2-0.5 solar, with a lower [$alpha$/Fe] than in the Milky Way. The ratio of CC/type Ia SN in the LMC is $N_{mathrm{CC}}/N_{mathrm{Ia}} = 1.35(_{-0.24}^{+0.11})$, lower than in local SN surveys and galaxy clusters. Comparison of X-ray luminosity functions of SNRs in Local Group galaxies reveals an intriguing excess of bright objects in the LMC. We confirm that 30 Doradus and the LMC Bar are offset from the main disc of the LMC, to the far and near sides, respectively. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا