ﻻ يوجد ملخص باللغة العربية
The importance of semi-arid ecosystems in the global carbon cycle as sinks for CO2 emissions has recently been highlighted. Africa is a carbon sink and nearly half its area comprises arid and semi-arid ecosystems. However, there are uncertainties regarding CO2 fluxes for semi-arid ecosystems in Africa, particularly savannas and dry tropical woodlands. In order to improve on existing remote-sensing based methods for estimating carbon uptake across semi-arid Africa we applied and tested the recently developed plant phenology index (PPI). We developed a PPI-based model estimating gross primary productivity (GPP) that accounts for canopy water stress, and compared it against three other Earth observation-based GPP models: the temperature and greenness model, the greenness and radiation model and a light use efficiency model. The models were evaluated against in situ data from four semi-arid sites in Africa with varying tree canopy cover (3 to 65 percent). Evaluation results from the four GPP models showed reasonable agreement with in situ GPP measured from eddy covariance flux towers (EC GPP) based on coefficient of variation, root-mean-square error, and Bayesian information criterion. The PPI-based GPP model was able to capture the magnitude of EC GPP better than the other tested models. The results of this study show that a PPI-based GPP model is a promising tool for the estimation of GPP in the semi-arid ecosystems of Africa.
Pristine coastal shallow systems are usually dominated by extensive meadows of seagrass species, which are assumed to take advantage of nutrient supply from sediment. An increasing nutrient input is thought to favour phytoplankton, epiphytic microalg
African Swine Fever (ASF) is viral infection which causes acute disease in domestic pigs and wild boar. Although the virus does not cause disease in humans, the impact it has on the economy, especially through trade and farming, is substantial. Recen
Mountain ecosystems are sensitive indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers. Mountain research sites within the LT
Forty years ago, Robert May questioned a central belief in ecology by proving that sufficiently large or complex ecological networks have probability of persisting close to zero. To prove this point, he analyzed large networks in which species intera
Explaining biodiversity in nature is a fundamental problem in ecology. An outstanding challenge is embodied in the so-called Competitive Exclusion Principle: two species competing for one limiting resource cannot coexist at constant population densit