In this paper the global existence of weak solutions to the relativistic BGK model for the relativistic Boltzmann equation is analyzed. The proof relies on the strong compactness of the density, velocity and temperature under minimal assumptions on the control of some moments of the initial condition together with the initial entropy.
In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $dot{H}^{-alpha}(mathbb{R}^{3})$ or $dot{H}^{-alpha}(mathbb{T}^{3})$ with $0<alphaleq 1/2$. This is ac
hieved by randomizing the initial data and showing that the energy of the solution modulus the linear part keeps finite for all $tgeq0$. Moreover, the energy of the solutions is also finite for all $t>0$. This improves the recent result of Nahmod, Pavlovi{c} and Staffilani on (SIMA, [1])in which $alpha$ is restricted to $0<alpha<frac{1}{4}$.
This paper is dedicated to the construction of global weak solutions to the quantum Navier-Stokes equation, for any initial value with bounded energy and entropy. The construction is uniform with respect to the Planck constant. This allows to perform
the semi-classical limit to the associated compressible Navier-Stokes equation. One of the difficulty of the problem is to deal with the degenerate viscosity, together with the lack of integrability on the velocity. Our method is based on the construction of weak solutions that are renormalized in the velocity variable. The existence, and stability of these solutions do not need the Mellet-Vasseur inequality.
In this paper, we are concerned with the local-in-time well-posedness of a fluid-kinetic model in which the BGK model with density dependent collision frequency is coupled with the inhomogeneous Navier-Stokes equation through drag forces. To the best
knowledge of authors, this is the first result on the existence of local-in-time smooth solution for particle-fluid model with nonlinear inter-particle operator for which the existence of time can be prolonged as the size of initial data gets smaller.
We establish the global existence of weak martingale solutions to the simplified stochastic Ericksen--Leslie system modeling the nematic liquid crystal flow driven by Wiener-type noises on the two-dimensional bounded domains. The construction of solu
tions is based on the convergence of Ginzburg--Landau approximations. To achieve such a convergence, we first utilize the concentration-cancellation method for the Ericksen stress tensor fields based on a Pohozaev type argument, and second the Skorokhod compactness theorem, which is built upon a uniform energy estimate.
We construct global weak solutions to isothermal quantum Navier-Stokes equations, with or without Korteweg term, in the whole space of dimension at most three. Instead of working on the initial set of unknown functions, we consider an equivalent refo
rmulation, based on a time-dependent rescaling, that we introduced in a previous paper to study the large time behavior, and which provides suitable a priori estimates, as opposed to the initial formulation where the potential energy is not signed. We proceed by working on tori whose size eventually becomes infinite. On each fixed torus, we consider the equations in the presence of drag force terms. Such equations are solved by regularization, and the limit where the drag force terms vanish is treated by resuming the notion of renormalized solution developed by I. Lacroix-Violet and A. Vasseur. We also establish global existence of weak solutions for the isothermal Korteweg equation (no viscosity), when initial data are well-prepared, in the sense that they stem from a Madelung transform.