ترغب بنشر مسار تعليمي؟ اضغط هنا

The Essential Role of Thermodynamics in metabolic network modeling: physical insights and computational challenges

65   0   0.0 ( 0 )
 نشر من قبل Enzo Marinari
 تاريخ النشر 2019
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantitative studies of cell metabolism are often based on large chemical reaction network models. A steady state approach is suited to analyze phenomena on the timescale of cell growth and circumvents the problem of incomplete experimental knowledge on kinetic laws and parameters, but it shall be supported by a correct implementation of thermodynamic constraints. In this article we review the latter aspect highlighting its computational challenges and physical insights. The simple introduction of Gibbs inequalities avoids the presence of unfeasible loops allowing for correct timescale analysis but leads to possibly non-convex feasible flux spaces, whose exploration needs efficient algorithms. We shorty review on the implementation of thermodynamics through variational principles in constraints based models of metabolic networks.



قيم البحث

اقرأ أيضاً

Understanding the organization of reaction fluxes in cellular metabolism from the stoichiometry and the topology of the underlying biochemical network is a central issue in systems biology. In this task, it is important to devise reasonable approxima tion schemes that rely on the stoichiometric data only, because full-scale kinetic approaches are computationally affordable only for small networks (e.g. red blood cells, about 50 reactions). Methods commonly employed are based on finding the stationary flux configurations that satisfy mass-balance conditions for metabolites, often coupling them to local optimization rules (e.g. maximization of biomass production) to reduce the size of the solution space to a single point. Such methods have been widely applied and have proven able to reproduce experimental findings for relatively simple organisms in specific conditions. Here we define and study a constraint-based model of cellular metabolism where neither mass balance nor flux stationarity are postulated, and where the relevant flux configurations optimize the global growth of the system. In the case of E. coli, steady flux states are recovered as solutions, though mass-balance conditions are violated for some metabolites, implying a non-zero net production of the latter. Such solutions furthermore turn out to provide the correct statistics of fluxes for the bacterium E. coli in different environments and compare well with the available experimental evidence on individual fluxes. Conserved metabolic pools play a key role in determining growth rate and flux variability. Finally, we are able to connect phenomenological gene essentiality with `frozen fluxes (i.e. fluxes with smaller allowed variability) in E. coli metabolism.
We cast the metabolism of interacting cells within a statistical mechanics framework considering both, the actual phenotypic capacities of each cell and its interaction with its neighbors. Reaction fluxes will be the components of high-dimensional sp in vectors, whose values will be constrained by the stochiometry and the energy requirements of the metabolism. Within this picture, finding the phenotypic states of the population turns out to be equivalent to searching for the equilibrium states of a disordered spin model. We provide a general solution of this problem for arbitrary metabolic networks and interactions. We apply this solution to a simplified model of metabolism and to a complex metabolic network, the central core of the emph{E. coli}, and demonstrate that the combination of selective pressure and interactions define a complex phenotypic space. Cells may specialize in producing or consuming metabolites complementing each other at the population level and this is described by an equilibrium phase space with multiple minima, like in a spin-glass model.
80 - E. Almaas , Z.N. Oltvai , 2006
Understanding the system level adaptive changes taking place in an organism in response to variations in the environment is a key issue of contemporary biology. Current modeling approaches such as the constraint-based flux balance analyses (FBA) have proved highly successful in analyzing the capabilities of cellular metabolism, including its capacity to predict deletion phenotypes, the ability to calculate the relative flux values of metabolic reactions and the properties of alternate optimal growth states. Here, we use FBA to thoroughly assess the activity of the Escherichia coli, Helicobacter pylori, and Saccharomyces cerevisiae metabolism in 30,000 diverse simulated environments. We identify a set of metabolic reactions forming a connected metabolic core that carry non-zero fluxes under all growth conditions, and whose flux variations are highly correlated. Furthermore, we find that the enzymes catalyzing the core reactions display a considerably higher fraction of phenotypic essentiality and evolutionary conservation than those catalyzing non-core reactions. Cellular metabolism is characterized by a large number of species-specific conditionally-active reactions organized around an evolutionary conserved always active metabolic core. Finally, we find that most current antibiotics interfering with the bacterial metabolism target the core enzymes, indicating that our findings may have important implications for antimicrobial drug target discovery.
115 - Ginestra Bianconi 2008
We study a statistical model describing the steady state distribution of the fluxes in a metabolic network. The resulting model on continuous variables can be solved by the cavity method. In particular analytical tractability is possible solving the cavity equation over an ensemble of networks with the same degree distribution of the real metabolic network. The flux distribution that optimizes production of biomass has a fat tail with a power-law exponent independent on the structural properties of the underling network. These results are in complete agreement with the Flux-Balance-Analysis outcome of the same system and in qualitative agreement with the experimental results.
Metabolism plays a central role in cell physiology because it provides the molecular machinery for growth. At the genome-scale, metabolism is made up of thousands of reactions interacting with one another. Untangling this complexity is key to underst and how cells respond to genetic, environmental, or therapeutic perturbations. Here we discuss the roles of two complementary strategies for the analysis of genome-scale metabolic models: Flux Balance Analysis (FBA) and network science. While FBA estimates metabolic flux on the basis of an optimisation principle, network approaches reveal emergent properties of the global metabolic connectivity. We highlight how the integration of both approaches promises to deliver insights on the structure and function of metabolic systems with wide-ranging implications in discovery science, precision medicine and industrial biotechnology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا