ترغب بنشر مسار تعليمي؟ اضغط هنا

Adhesive contact of model randomly rough rubber surfaces

91   0   0.0 ( 0 )
 نشر من قبل Antoine Chateauminois
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study experimentally and theoretically the equilibrium adhesive contact between a smooth glass lens and a rough rubber surface textured with spherical microasperities with controlled height and spatial distributions. Measurements of the real contact area $A$ versus load $P$ are performed under compression by imaging the light transmitted at the microcontacts. $A(P)$ is found to be non-linear and to strongly depend on the standard deviation of the asperity height distribution. Experimental results are discussed in the light of a discrete version of Fuller and Tabors (FT) original model (textit{Proceedings of the Royal Society A} textbf{345} (1975) 327), which allows to take into account the elastic coupling arising from both microasperities interactions and curvature of the glass lens. Our experimental data on microcontact size distributions are well captured by our discrete extended model. We show that the elastic coupling arising from the lens curvature has a significant contribution to the $A(P)$ relationship. Our discrete model also clearly shows that the adhesion-induced effect on $A$ remains significant even for vanishingly small pull-off forces. Last, at the local asperity length scale, our measurements show that the pressure dependence of the microcontacts density can be simply described by the original FT model.



قيم البحث

اقرأ أيضاً

We report on normal contact and friction measurements of model multicontact interfaces formed between smooth surfaces and substrates textured with a statistical distribution of spherical micro-asperities. Contacts are either formed between a rigid te xtured lens and a smooth rubber, or a flat textured rubber and a smooth rigid lens. Measurements of the real area of contact $A$ versus normal load $P$ are performed by imaging the light transmitted at the microcontacts. For both interfaces, $A(P)$ is found to be sub-linear with a power law behavior. Comparison to two multi-asperity contact models, which extend Greenwood-Williamson (J. Greenwood, J. Williamson, textit{Proc. Royal Soc. London Ser. A} textbf{295}, 300 (1966)) model by taking into account the elastic interaction between asperities at different length scales, is performed, and allows their validation for the first time. We find that long range elastic interactions arising from the curvature of the nominal surfaces are the main source of the non-linearity of $A(P)$. At a shorter range, and except for very low pressures, the pressure dependence of both density and area of micro-contacts remains well described by Greenwood-Williamsons model, which neglects any interaction between asperities. In addition, in steady sliding, friction measurements reveal that the mean shear stress at the scale of the asperities is systematically larger than that found for a macroscopic contact between a smooth lens and a rubber. This suggests that frictional stresses measured at macroscopic length scales may not be simply transposed to microscopic multicontact interfaces.
We report on measurements of the local friction law at a multi-contact interface formed between a smooth rubber and statistically rough glass lenses, under steady state friction. Using contact imaging, surface displacements are measured, and inverted to extract both distributions of frictional shear stress and contact pressure with a spatial resolution of about 10~$mu$m. For a glass surface whose topography is self-affine with a Gaussian height asperity distribution, the local frictional shear stress is found to vary strongly sub-linearly with the local contact pressure over the whole investigated pressure range. Such sub-linear behavior is also evidenced for a surface with a non Gaussian height asperity distribution, demonstrating that, for such multi-contact interfaces, Amontons-Coulombs friction law does not prevail at the local scale.
Frictional properties of contacts between a smooth viscoelastic rubber and rigid surfaces are investigated using a torsional contact configuration where a glass lens is continuously rotated on the rubber surface. From the inversion of the displacemen t field measured at the surface of the rubber, spatially resolved values of the steady state frictional shear stress are determined within the non homogeneous pressure and velocity fields of the contact. For contacts with a smooth lens, a velocity dependent but pressure independent local shear stress is retrieved from the inversion. On the other hand, the local shear stress is found to depend both on velocity and applied contact pressure when a randomly rough (sand blasted) glass lens is rubbed against the rubber surface. As a result of changes in the density of micro-asperity contacts, the amount of light transmitted by the transparent multi-contact interface is observed to vary locally as a function of both contact pressure and sliding velocity. Under the assumption that the intensity of light transmitted by the rough interface is proportional to the proportion of area into contact, it is found that the local frictional stress can be expressed experimentally as the product of a purely velocity dependent term, $k(v)$, by a term representing the pressure and velocity dependence of the actual contact area, $A/A_0$. A comparison between $k(v)$ and the frictional shear stress of smooth contacts suggests that nanometer scale dissipative processes occurring at the interface predominate over viscoelastic dissipation at micro-asperity scale.
129 - B. Lorenz , B.N.J. Persson 2008
We study the average separation between an elastic solid and a hard solid with a nominal flat but randomly rough surface, as a function of the squeezing pressure. We present experimental results for a silicon rubber (PDMS) block with a flat surface s queezed against an asphalt road surface. The theory shows that an effective repulse pressure act between the surfaces of the form p proportional to exp(-u/u0), where u is the average separation between the surfaces and u0 a constant of order the root-mean-square roughness, in good agreement with the experimental results.
The complicated dynamics of the contact line of a moving droplet on a solid substrate often hamper the efficient modeling of microfluidic systems. In particular, the selection of the effective boundary conditions, specifying the contact line motion, is a controversial issue since the microscopic physics that gives rise to this displacement is still unknown. Here, a sharp interface, continuum-level, novel modeling approach, accounting for liquid/solid micro-scale interactions assembled in a disjoining pressure term, is presented. By following a unified conception (the model applies both to the liquid/solid and the liquid/ambient interfaces), the friction forces at the contact line, as well as the dynamic contact angle are derived implicitly as a result of the disjoining pressure and viscous effects interplay in the vicinity of the substrates intrinsic roughness. Previous hydrodynamic model limitations, of imposing the contact line boundary condition to an unknown number and reconfigurable contact lines, when modeling the spreading dynamics on textured substrates, are now overcome. The validity of our approach is tested against experimental data of a droplet impacting on a horizontal solid surface. The study of the early spreading stage on hierarchically structured and chemically patterned solid substrates reveal an inertial regime where the contact radius grows according to a universal power law, perfectly agreeing with recently published experimental findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا