ﻻ يوجد ملخص باللغة العربية
At low temperatures, microwave cavities are often preferred for the readout and control of a variety of systems. In this paper, we present design and measurements on an optomechanical device based on a 3-dimensional rectangular waveguide cavity. We show that by suitably modifying the electromagnetic field corresponding to the fundamental mode of the cavity, the equivalent circuit capacitance can be reduced to 29 fF. By coupling a mechanical resonator to the modified electromagnetic mode of the cavity, we achieved a capacitance participation ratio of 43 $%$. We demonstrate an optomechanical cooperativity, $C$$sim$40, characterized by performing measurements in the optomechanically-induced absorption (OMIA) limit. In addition, due to a low-impedance environment between the two-halves of the cavity, our design has the flexibility of incorporating a DC bias across the mechanical resonator, often a desired feature in tunable optomechanical devices.
We consider an optomechanical system comprising a single cavity mode and a dense spectrum of acoustic modes and solve for the quantum dynamics of initial cavity mode Fock (i.e., photon number) superposition states and thermal acoustic states. The opt
The mechanical properties of light have found widespread use in the manipulation of gas-phase atoms and ions, helping create new states of matter and realize complex quantum interactions. The field of cavity-optomechanics strives to scale this intera
We present an experimental study of dynamical back-action cooling of the fundamental vibrational mode of a thin semitransparent membrane placed within a high-finesse optical cavity. We study how the radiation pressure interaction modifies the mechani
We explore whether localized surface plasmon polariton modes can transfer heat between molecules placed in the hot spot of a nanoplasmonic cavity through optomechanical interaction with the molecular vibrations. We demonstrate that external driving o
We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipole