ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral and morphological study of the gamma radiation of the middle-aged supernova remnant HB 21

96   0   0.0 ( 0 )
 نشر من قبل Lucia Ambrogi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the nature of the accelerated particles responsible for the production of the gamma-ray emission observed from the middle-aged supernova remnant (SNR) HB 21. The analysis of more than nine years of Fermi LAT data leads to the observation of an extended emission positionally in agreement with the SNR HB 21. The bulk of this gamma-ray emission is detected from the remnant; photons up to $sim$10,GeV show clear evidence of curvature at the lower energies. The remnant is characterized by an extension of $0^{circ}.83$, that is, 30% smaller than claimed in previous studies. The increased statistics allows us also to resolve a point-like source at the edge of the remnant, in proximity to a molecular cloud of the Cyg OB7 complex. In the southern part of the remnant, a hint of an additional gamma-ray excess in correspondence to shocked molecular clouds is observed. The spectral energy distribution of the SNR shows evidence of a break around 400 MeV, which can be properly fitted within both the hadronic and leptonic scenario. The pion-decay mechanism reproduces well the gamma rays, postulating a proton spectrum with a slope $sim 2.5$ and with a steepening around tens of GeV, which could be explained by the energy-dependent escape of particles from the remnant. In the leptonic scenario the electron spectrum within the SNR matches closely the locally measured spectrum. This remarkable and novel result shows that SNR HB 21 could be a direct contributor to the population of Galactic electrons. In the leptonic scenario, we find that the local electron spectrum with a break around 2 GeV, closely evokes the best-fitting parental spectrum within this SNR. If such a scenario is confirmed, this would indicate that the SNR might be a source of Galactic background electrons.



قيم البحث

اقرأ أيضاً

159 - G. Pivato , J. Hewitt , L. Tibaldo 2013
We present the analysis of Fermi Large Area Telescope (LAT) $gamma$-ray observations of HB~21 (G89.0+4.7). We detect significant $gamma$-ray emission associated with the remnant: the flux >100 MeV is $9.4pm0.8(stat)pm1.6(syst)times10^{-11}$ erg cm$^{ -2}$ s$^{-1}$. HB 21 is well modeled by a uniform disk centered at $l= 88{deg}.75pm 0{deg}.04$, $b = +4{deg}.65 pm 0{deg}.06$ with a radius of $1{deg}.19 pm 0{deg}.06$. The $gamma$-ray spectrum shows clear evidence of curvature, suggesting a cutoff or break in the underlying particle population at an energy of a few GeV. We complement $gamma$-ray observations with the analysis of the WMAP 7-year data from 23 to 93 GHz, achieving the first detection of HB 21 at these frequencies. In combination with archival radio data, the radio spectrum shows a spectral break which helps to constrain the relativistic electron spectrum, hence parameters of simple non-thermal radiation models. In one-zone models multiwavelength data favor the origin of $gamma$ rays from nucleon-nucleon collisions. A single population of electrons cannot produce both $gamma$ rays through bremsstrahlung and radio emission through synchrotron radiation. A predominantly inverse-Compton origin of the $gamma$-ray emission is disfavored because it requires lower interstellar densities than are inferred for HB 21. In the hadronic-dominated scenarios accelerated nuclei contribute a total energy of $sim 3 times10^{49}$ ergs, while in a two-zone bremsstrahlung-dominated scenario the total energy in accelerated particles is $sim1times10^{49}$ ergs.
Despite their importance, a detailed understanding of Type Ia supernovae (SNe Ia) remains elusive. X-ray measurements of the element distributions in supernova remnants (SNRs) offer important clues for understanding the explosion and nucleosynthesis mechanisms for SNe Ia. However, it is challenging to observe the entire ejecta mass in X-rays for young SNRs, because the central ejecta may not have been heated by the reverse shock yet. Here we present over 200 kilosecond Chandra observations of the Type Ia SNR G344.7-0.1, whose age is old enough for the reverse shock to have reached the SNR center, providing an opportunity to investigate the distribution of the entire ejecta mass. We reveal a clear stratification of heavy elements with a centrally peaked distribution of the Fe ejecta surrounded by intermediate-mass elements (IMEs: Si, S, Ar Ca) with an arc-like structure. The centroid energy of the Fe K emission is marginally lower in the central Fe-rich region than in the outer IME-rich regions, suggesting that the Fe ejecta were shock-heated more recently. These results are consistent with the prediction for standard SN Ia models, where the heavier elements are synthesized in the interior of an exploding white dwarf. We find, however, that the peak location of the Fe K emission is slightly offset to the west with respect to the geometric center of the SNR. This apparent asymmetry is likely due to the inhomogeneous density distribution of the ambient medium, consistent with our radio observations of the ambient molecular and neutral gas.
229 - Giovanna Zanardo 2014
We present a comprehensive spectral and morphological analysis of the remnant of Supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal component s of the radio emission are investigated in images from 94 to 672 GHz ($lambda$ 3.2 mm to 450 $mu$m), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component ($S_{ u}propto u^{-0.73}$) and the thermal component originating from dust grains at $Tsim22$ K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localised west of the SN site, as the spectral analysis yields $-0.4lesssimalphalesssim-0.1$ across the western regions, with $alphasim0$ around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.
We conduct a multi-wavelength morphological study of the Galactic supernova remnant RXJ0852.0-4622 (also known as Vela Jr., Vela Z and G266.2-1.2). RX J0852.0-4622 is coincident with the edge of the larger Vela supernova remnant causing confusion in the attribution of some filamentary structures to either RX J0852.0-4622 or its larger sibling. We find that the RX J0852.0-4622 radio continuum emission can be characterised by a 2-dimensional shell with a radius of 0.90+/-0.01deg (or 11.8+/-0.6pc at an assumed distance of 750pc) centred at (l,b)=(133.08+/-0.01 deg,-46.34+/-0.01deg) (or RA=8h52m19.2s, Dec=-46deg2024.0, J2000), consistent with X-ray and gamma-ray emission. Although [OIII] emission features are generally associated with the Vela SNR, one particular [OIII] emission feature, which we denote as the Vela Claw, morphologically matches a molecular clump that is thought to have been stripped by the stellar progenitor of the RX J0852.0-4622 SNR. We argue that the Vela Claw feature is possibly associated with RX J0852.0-4622. Towards the north-western edge of RX J0852.0-4622, we find a flattening of the radio spectral index towards another molecular clump also thought to be associated with RX J0852.0-4622. It is currently unclear whether this feature and the Vela Claw result from interactions between the RX J0852.0-4622 shock and the ISM.
138 - Satoru Katsuda 2009
We present results from X-ray analysis of a Galactic middle-aged supernova remnant (SNR) G156.2+5.7 which is bright and largely extended in X-ray wavelengths, showing a clear circular shape (radius about 50). Using the Suzaku satellite, we observed t his SNR in three pointings; partially covering the northwestern rim, the eastern rim, and the central portion of this SNR. In the northwestern rim and the central portion, we confirm that the X-ray spectra consist of soft and hard-tail emission, while in the eastern rim we find no significant hard-tail emission. The soft emission is well fitted by non-equilibrium ionization (NEI) model. In the central portion, a two-component (the interstellar medium and the metal-rich ejecta) NEI model fits the soft emission better than a one-component NEI model from a statistical point of view. The relative abundances in the ejecta component suggest that G156.2+5.7 is a remnant from a core-collapse SN explosion whose progenitor mass is less than 15 M_solar. The origin of the hard-tail emission is highly likely non-thermal synchrotron emission from relativistic electrons. In the northwestern rim, the relativistic electrons seem to be accelerated by a forward shock with a slow velocity of about 500 km/sec.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا