ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical evolution of disc galaxies from cosmological simulations

352   0   0.0 ( 0 )
 نشر من قبل Milena Valentini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a suite of cosmological hydrodynamical simulations of disc galaxies, with zoomed-in initial conditions leading to the formation of a halo of mass $M_{rm halo, , DM} simeq 2 cdot 10^{12}$ M$_{odot}$ at redshift $z=0$. These simulations aim at investigating the chemical evolution and the distribution of metals in a disc galaxy, and at quantifying the effect of $(i)$ the assumed IMF, $(ii)$ the adopted stellar yields, and $(iii)$ the impact of binary systems originating SNe Ia on the process of chemical enrichment. We consider either a Kroupa et al. (1993) or a more top-heavy Kroupa (2001) IMF, two sets of stellar yields and different values for the fraction of binary systems suitable to give rise to SNe Ia. We investigate stellar ages, SN rates, stellar and gas metallicity gradients, and stellar $alpha$-enhancement in simulations, and compare predictions with observations. We find that a Kroupa et al. (1993) IMF has to be preferred when modelling late-type galaxies in the local universe. On the other hand, the comparison of stellar metallicity profiles and $alpha$-enhancement trends with observations of Milky Way stars shows a better agreement when a Kroupa (2001) IMF is assumed. Comparing the predicted SN rates and stellar $alpha$-enhancement with observations supports a value for the fraction of binary systems producing SNe Ia of $0.03$, at least for late-type galaxies and for the considered IMFs. Adopted stellar yields are crucial in regulating cooling and star formation, and in determining patterns of chemical enrichment for stars, especially for those located in the galaxy bulge.



قيم البحث

اقرأ أيضاً

We investigate how the stellar and gas-phase He abundances evolve as functions of time within simulated star-forming disc galaxies with different star formation histories. We make use of a cosmological chemodynamical simulation for galaxy formation a nd evolution, which includes star formation, as well as energy and chemical enrichment feedback from asymptotic giant branch stars, core-collapse supernovae, and Type Ia supernovae. The predicted relations between the He mass fraction, $Y$, and the metallicity, $Z$, in the interstellar medium of our simulated disc galaxies depend on the past galaxy star formation history. In particular, $dY/dZ$ is not constant and evolves as a function of time, depending on the specific chemical element that we choose to trace $Z$; in particular, $dY/dX_{text{O}}$ and $dY/dX_{text{C}}$ increase as functions of time, whereas $dY/dX_{text{N}}$ decreases. In the gas-phase, we find negative radial gradients of $Y$, due to the inside-out growth of our simulated galaxy discs as a function of time; this gives rise to longer chemical enrichment time scales in the outer galaxy regions, where we find lower average values for $Y$ and $Z$. Finally, by means of chemical evolution models, in the galactic bulge and inner disc, we predict steeper $Y$ versus age relations at high $Z$ than in the outer galaxy regions. We conclude that, for calibrating the assumed $Y$-$Z$ relation in stellar models, C, N, and C+N are better proxies for the metallicity than O, because they show steeper and less scattered relations.
135 - L. Biaus , S. E. Nuza (2 2021
In the context of the concordance cosmology, structure formation in the Universe is the result of the amplification, by gravitational effects, of small perturbations in the primeval density field. This results in the formation of structures known as dark matter haloes, where gas collapses and forms stars, giving birth to galaxies. Numerical simulations are an important tool in the theoretical study of galaxy formation and evolution. In the present work, we describe the implementation of a chemical enrichment model in a state-of-the-art cosmological simulation of the Local Group. The simulation includes sub-grid models for the most relevant physical processes. We analyze the chemical and morphological evolution of two galaxies with virial masses similar to that of our Milky Way. For each of the stellar components (disc, bulge and halo), we establish links between their formation history and their chemical evolution. We find that $alpha$-element (O, Mg, Si) enrichment happens at early stages of evolution, as their main producers are short-lived stars which end their lives as type II supernova explosions. There is also a gradual contamination with the rest of the elements as type Ia supernovae and winds of stars in the asymptotic giant branch occur.
In this paper, we study the formation and chemical evolution of the Milky Way disc with particular focus on the abundance patterns ([$alpha$/Fe] vs. [Fe/H]) at different Galactocentric distances, the present-time abundance gradients along the disc an d the time evolution of abundance gradients. We consider the chemical evolution models for the Galactic disc developed by Grisoni et al. (2017) for the solar neighborhood, both the two-infall and the one-infall ones, and we extend our analysis to the other Galactocentric distances. In particular, we examine the processes which mainly influence the formation of the abundance gradients: the inside-out scenario, a variable star formation efficiency, and radial gas flows. We compare our model results with recent abundance patterns obtained along the Galactic disc from the APOGEE survey and with abundance gradients observed from Cepheids, open clusters, HII regions and PNe. We conclude that the inside-out scenario is a key ingredient, but cannot be the only one to explain abundance patterns at different Galactocentric distances and abundance gradients. Further ingredients, such as radial gas flows and variable star formation efficiency, are needed to reproduce the observed features in the thin disc. The evolution of abundance gradients with time is also shown, although firm conclusions cannot still be drawn.
94 - A. Marasco , L. Posti , K. Oman 2020
We investigate the disc-halo connection in massive (Mstar/Msun>5e10) disc galaxies from the cosmological hydrodynamical simulations EAGLE and IllustrisTNG, and compare it with that inferred from the study of HI rotation curves in nearby massive spira ls from the Spitzer Photometry and Accurate Rotation Curves (SPARC) dataset. We find that discrepancies between the the simulated and observed discs arise both on global and on local scales. Globally, the simulated discs inhabit halos that are a factor ~4 (in EAGLE) and ~2 (in IllustrisTNG) more massive than those derived from the rotation curve analysis of the observed dataset. We also use synthetic rotation curves of the simulated discs to demonstrate that the recovery of the halo masses from rotation curves are not systematically biased. We find that the simulations predict dark-matter dominated systems with stellar-to-total enclosed mass ratios that are a factor of 1.5-2 smaller than real galaxies at all radii. This is an alternative manifestation of the `failed feedback problem, since it indicates that simulated halos hosting massive discs have been too inefficient at converting their baryons into stars, possibly due to an overly efficient stellar and/or AGN feedback implementation.
There is strong evidence that the diffuse ionized gas (DIG) in disc galaxies is photoionized by radiation from UV luminous O and B stars in the galactic disc, both from observations and detailed numerical models. However, it is still not clear what m echanism is responsible for providing the necessary pressure support for a diffuse gas layer at kpc-scale above the disc. In this work we investigate if the pressure increase caused by photoionization can provide this support. We run self-consistent radiation hydrodynamics models of a gaseous disc in an external potential. We find that photoionization feedback can drive low levels of turbulence in the dense galactic disc, and that it provides pressure support for an extended diffuse gas layer. Our results show that there is a natural fine-tuning between the total ionizing radiation budget of the sources in the galaxy and the amount of gas in the different ionization phases of the ISM, and provide the first fully consistent radiation hydrodynamics model of the DIG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا