ﻻ يوجد ملخص باللغة العربية
Many biological and neural systems can be seen as networks of interacting periodic processes. Importantly, their functionality depends on the emerging collective dynamics of the network. Synchrony of oscillations is one of the most prominent examples of such collective behavior and has been associated both with function and dysfunction. Understanding how network structure and interactions, as well as the microscopic properties of individual units, shape the emerging collective dynamics is critical to find factors that lead to malfunction. However, many biological systems such as the brain consist of a large number of dynamical units. Hence, their analysis has either relied on simplified heuristic models on a coarse scale, or the analysis comes at a huge computational cost. Here we review recently introduced approaches, known as the Ott-Antonsen and Watanabe-Strogatz reductions, allowing one to simplify the analysis by bridging small and large scales. Thus, reduced model equations are obtained that exactly describe the collective dynamics for each subpopulation in the oscillator network via few collective variables only. The resulting equations are next-generation models: Rather than being heuristic, they exactly link microscopic and macroscopic descriptions and therefore accurately capture microscopic properties of the underlying system. At the same time, they are sufficiently simple to analyze without great computational effort. In the last decade, these reduction methods have become instrumental in understanding how network structure and interactions shape the collective dynamics and the emergence of synchrony. We review this progress based on concrete examples and outline possible limitations. Finally, we discuss how linking the reduced models with experimental data can guide the way towards the development of new treatment approaches, for example, for neurological disease.
When the interactions of agents on a network are assumed to follow the Deffuant opinion dynamics model, the outcomes are known to depend on the structure of the underlying network. This behavior cannot be captured by existing mean-field approximation
Synchronization is an important behavior that characterizes many natural and human made systems composed by several interacting units. It can be found in a broad spectrum of applications, ranging from neuroscience to power-grids, to mention a few. Su
The behavior at bifurcation from global synchronization to partial synchronization in finite networks of coupled oscillators is a complex phenomenon, involving the intricate dynamics of one or more oscillators with the remaining synchronized oscillat
We formulate a mathematical model for daily activities of a cow (eating, lying down, and standing) in terms of a piecewise affine dynamical system. We analyze the properties of this bovine dynamical system representing the single animal and develop a
Model reduction techniques have been widely used to study the collective behavior of globally coupled oscillators. However, most approaches assume that there are infinitely many oscillators. Here we propose a new ansatz, based on the collective coord