ﻻ يوجد ملخص باللغة العربية
Before training a neural net, a classic rule of thumb is to randomly initialize the weights so the variance of activations is preserved across layers. This is traditionally interpreted using the total variance due to randomness in both weights emph{and} samples. Alternatively, one can interpret the rule of thumb as preservation of the variance over samples for a fixed network. The two interpretations differ little for a shallow net, but the difference is shown to grow with depth for a deep ReLU net by decomposing the total variance into the network-averaged sum of the sample variance and square of the sample mean. We demonstrate that even when the total variance is preserved, the sample variance decays in the later layers through an analytical calculation in the limit of infinite network width, and numerical simulations for finite width. We show that Batch Normalization eliminates this decay and provide empirical evidence that preserving the sample variance instead of only the total variance at initialization time can have an impact on the training dynamics of a deep network.
This paper revisits the so-called vanishing gradient phenomenon, which commonly occurs in deep randomly initialized neural networks. Leveraging an in-depth analysis of neural chains, we first show that vanishing gradients cannot be circumvented when
Injectivity plays an important role in generative models where it enables inference; in inverse problems and compressed sensing with generative priors it is a precursor to well posedness. We establish sharp characterizations of injectivity of fully-c
It has been widely assumed that a neural network cannot be recovered from its outputs, as the network depends on its parameters in a highly nonlinear way. Here, we prove that in fact it is often possible to identify the architecture, weights, and bia
Learned optimizers are increasingly effective, with performance exceeding that of hand designed optimizers such as Adam~citep{kingma2014adam} on specific tasks citep{metz2019understanding}. Despite the potential gains available, in current work the m
We present a theoretical and empirical study of the gradient dynamics of overparameterized shallow ReLU networks with one-dimensional input, solving least-squares interpolation. We show that the gradient dynamics of such networks are determined by th