ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning partial differential equations for biological transport models from noisy spatiotemporal data

69   0   0.0 ( 0 )
 نشر من قبل Kevin Flores
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate methods for learning partial differential equation (PDE) models from spatiotemporal data under biologically realistic levels and forms of noise. Recent progress in learning PDEs from data have used sparse regression to select candidate terms from a denoised set of data, including approximated partial derivatives. We analyze the performance in utilizing previous methods to denoise data for the task of discovering the governing system of partial differential equations (PDEs). We also develop a novel methodology that uses artificial neural networks (ANNs) to denoise data and approximate partial derivatives. We test the methodology on three PDE models for biological transport, i.e., the advection-diffusion, classical Fisher-KPP, and nonlinear Fisher-KPP equations. We show that the ANN methodology outperforms previous denoising methods, including finite differences and polynomial regression splines, in the ability to accurately approximate partial derivatives and learn the correct PDE model.



قيم البحث

اقرأ أيضاً

We develop a framework for estimating unknown partial differential equations from noisy data, using a deep learning approach. Given noisy samples of a solution to an unknown PDE, our method interpolates the samples using a neural network, and extract s the PDE by equating derivatives of the neural network approximation. Our method applies to PDEs which are linear combinations of user-defined dictionary functions, and generalizes previous methods that only consider parabolic PDEs. We introduce a regularization scheme that prevents the function approximation from overfitting the data and forces it to be a solution of the underlying PDE. We validate the model on simulated data generated by the known PDEs and added Gaussian noise, and we study our method under different levels of noise. We also compare the error of our method with a Cramer-Rao lower bound for an ordinary differential equation. Our results indicate that our method outperforms other methods in estimating PDEs, especially in the low signal-to-noise regime.
194 - Wenbo Cao , Weiwei Zhang 2020
Machine learning of partial differential equations from data is a potential breakthrough to solve the lack of physical equations in complex dynamic systems, but because numerical differentiation is ill-posed to noise data, noise has become the bigges t obstacle in the application of partial differential equation identification method. To overcome this problem, we propose Frequency Domain Identification method based on Fourier transforms, which effectively eliminates the influence of noise by using the low frequency component of frequency domain data to identify partial differential equations in frequency domain. We also propose a new sparse identification criterion, which can accurately identify the terms in the equation from low signal-to-noise ratio data. Through identifying a variety of canonical equations spanning a number of scientific domains, the proposed method is proved to have high accuracy and robustness for equation structure and parameters identification for low signal-to-noise ratio data. The method provides a promising technique to discover potential partial differential equations from noisy experimental data.
Equation learning methods present a promising tool to aid scientists in the modeling process for biological data. Previous equation learning studies have demonstrated that these methods can infer models from rich datasets, however, the performance of these methods in the presence of common challenges from biological data has not been thoroughly explored. We present an equation learning methodology comprised of data denoising, equation learning, model selection and post-processing steps that infers a dynamical systems model from noisy spatiotemporal data. The performance of this methodology is thoroughly investigated in the face of several common challenges presented by biological data, namely, sparse data sampling, large noise levels, and heterogeneity between datasets. We find that this methodology can accurately infer the correct underlying equation and predict unobserved system dynamics from a small number of time samples when the data is sampled over a time interval exhibiting both linear and nonlinear dynamics. Our findings suggest that equation learning methods can be used for model discovery and selection in many areas of biology when an informative dataset is used. We focus on glioblastoma multiforme modeling as a case study in this work to highlight how these results are informative for data-driven modeling-based tumor invasion predictions.
Agent-based models provide a flexible framework that is frequently used for modelling many biological systems, including cell migration, molecular dynamics, ecology, and epidemiology. Analysis of the model dynamics can be challenging due to their inh erent stochasticity and heavy computational requirements. Common approaches to the analysis of agent-based models include extensive Monte Carlo simulation of the model or the derivation of coarse-grained differential equation models to predict the expected or averaged output from the agent-based model. Both of these approaches have limitations, however, as extensive computation of complex agent-based models may be infeasible, and coarse-grained differential equation models can fail to accurately describe model dynamics in certain parameter regimes. We propose that methods from the equation learning field provide a promising, novel, and unifying approach for agent-based model analysis. Equation learning is a recent field of research from data science that aims to infer differential equation models directly from data. We use this tutorial to review how methods from equation learning can be used to learn differential equation models from agent-based model simulations. We demonstrate that this framework is easy to use, requires few model simulations, and accurately predicts model dynamics in parameter regions where coarse-grained differential equation models fail to do so. We highlight these advantages through several case studies involving two agent-based models that are broadly applicable to biological phenomena: a birth-death-migration model commonly used to explore cell biology experiments and a susceptible-infected-recovered model of infectious disease spread.
We describe a neural-based method for generating exact or approximate solutions to differential equations in the form of mathematical expressions. Unlike other neural methods, our system returns symbolic expressions that can be interpreted directly. Our method uses a neural architecture for learning mathematical expressions to optimize a customizable objective, and is scalable, compact, and easily adaptable for a variety of tasks and configurations. The system has been shown to effectively find exact or approximate symbolic solutions to various differential equations with applications in natural sciences. In this work, we highlight how our method applies to partial differential equations over multiple variables and more complex boundary and initial value conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا