ﻻ يوجد ملخص باللغة العربية
This paper demonstrates the anisotropic response of quantum critical fluctuations with respect to the direction of the magnetic field $B$ in Ni-doped CeCoIn$_5$ by measuring the magnetization $M$ and specific heat $C$. The results show that $M/B$ at $B=0.1 {rm T}$ for both the tetragonal $c$ and $a$ directions exhibits $T^{-eta}$ dependencies, and that $C/T$ at $B=0$ follows a $-ln T$ function, which are the characteristics of non-Fermi-liquid (NFL) behaviors. For $B,||,c$, both the $M/Bpropto T^{-eta}$ and $C/T propto -ln T$ dependencies change into nearly temperature-constant behaviors by increasing $B$, indicating a crossover from the NFL state to the Fermi-liquid state. For $B,||,a$, however, the NFL behavior in $C/T$ persists up to $B=7 {rm T}$, whereas $M/B$ exhibits temperature-independent behavior for $Bge 1 {rm T}$. These contrasting characteristics in $M/B$ and $C/T$ reflect the anisotropic nature of quantum critical fluctuations; the $c$-axis spin component significantly contributes to the quantum critical fluctuations. We compare this anisotropic behavior of the spin fluctuations to superconducting properties in pure CeCoIn$_5$, especially to the anisotropy in the upper critical field and the Ising-like characteristics in the spin resonance excitation, and suggest a close relationship between them.
We present a detailed analysis of the upper critical field for CeCoIn5 under high pressure. We show that, consistently with other measurements, this system shows a decoupling between maximum of the superconducting transition temperature Tc and maximu
We present a study of thermoelectric coefficients in CeCoIn_5 down to 0.1 K and up to 16 T in order to probe the thermoelectric signatures of quantum criticality. In the vicinity of the field-induced quantum critical point, the Nernst coefficient nu
The thermal conductivity kappa of the heavy-fermion metal CeCoIn5 was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the supercond
We have succeeded in growing single crystals of the heavy-fermion superconductor CeCo(In1-xZnx)5 with x<=0.07. Measurements of specific heat, electrical resistivity, dc magnetization and ac susceptibility revealed that the superconducting (SC) transi
Measurements of specific heat and electrical resistivity in magnetic fields up to 9 T along [001] and temperatures down to 50 mK of Sn-substituted CeCoIn5 are reported. The maximal -ln(T) divergence of the specific heat at the upper critical field H_