ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding over-parameterized deep networks by geometrization

242   0   0.0 ( 0 )
 نشر من قبل Xiao Dong
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A complete understanding of the widely used over-parameterized deep networks is a key step for AI. In this work we try to give a geometric picture of over-parameterized deep networks using our geometrization scheme. We show that the Riemannian geometry of network complexity plays a key role in understanding the basic properties of over-parameterizaed deep networks, including the generalization, convergence and parameter sensitivity. We also point out deep networks share lots of similarities with quantum computation systems. This can be regarded as a strong support of our proposal that geometrization is not only the bible for physics, it is also the key idea to understand deep learning systems.



قيم البحث

اقرأ أيضاً

120 - Xiao Dong , Ling Zhou 2019
How to understand deep learning systems remains an open problem. In this paper we propose that the answer may lie in the geometrization of deep networks. Geometrization is a bridge to connect physics, geometry, deep network and quantum computation an d this may result in a new scheme to reveal the rule of the physical world. By comparing the geometry of image matching and deep networks, we show that geometrization of deep networks can be used to understand existing deep learning systems and it may also help to solve the interpretability problem of deep learning systems.
One of the mysteries in the success of neural networks is randomly initialized first order methods like gradient descent can achieve zero training loss even though the objective function is non-convex and non-smooth. This paper demystifies this surpr ising phenomenon for two-layer fully connected ReLU activated neural networks. For an $m$ hidden node shallow neural network with ReLU activation and $n$ training data, we show as long as $m$ is large enough and no two inputs are parallel, randomly initialized gradient descent converges to a globally optimal solution at a linear convergence rate for the quadratic loss function. Our analysis relies on the following observation: over-parameterization and random initialization jointly restrict every weight vector to be close to its initialization for all iterations, which allows us to exploit a strong convexity-like property to show that gradient descent converges at a global linear rate to the global optimum. We believe these insights are also useful in analyzing deep models and other first order methods.
116 - Lili Su , Pengkun Yang 2019
We consider training over-parameterized two-layer neural networks with Rectified Linear Unit (ReLU) using gradient descent (GD) method. Inspired by a recent line of work, we study the evolutions of network prediction errors across GD iterations, whic h can be neatly described in a matrix form. When the network is sufficiently over-parameterized, these matrices individually approximate {em an} integral operator which is determined by the feature vector distribution $rho$ only. Consequently, GD method can be viewed as {em approximately} applying the powers of this integral operator on the underlying/target function $f^*$ that generates the responses/labels. We show that if $f^*$ admits a low-rank approximation with respect to the eigenspaces of this integral operator, then the empirical risk decreases to this low-rank approximation error at a linear rate which is determined by $f^*$ and $rho$ only, i.e., the rate is independent of the sample size $n$. Furthermore, if $f^*$ has zero low-rank approximation error, then, as long as the width of the neural network is $Omega(nlog n)$, the empirical risk decreases to $Theta(1/sqrt{n})$. To the best of our knowledge, this is the first result showing the sufficiency of nearly-linear network over-parameterization. We provide an application of our general results to the setting where $rho$ is the uniform distribution on the spheres and $f^*$ is a polynomial. Throughout this paper, we consider the scenario where the input dimension $d$ is fixed.
The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great importance. We propose a novel orthogonal over-paramete rized training (OPT) framework that can provably minimize the hyperspherical energy which characterizes the diversity of neurons on a hypersphere. By maintaining the minimum hyperspherical energy during training, OPT can greatly improve the empirical generalization. Specifically, OPT fixes the randomly initialized weights of the neurons and learns an orthogonal transformation that applies to these neurons. We consider multiple ways to learn such an orthogonal transformation, including unrolling orthogonalization algorithms, applying orthogonal parameterization, and designing orthogonality-preserving gradient descent. For better scalability, we propose the stochastic OPT which performs orthogonal transformation stochastically for partial dimensions of neurons. Interestingly, OPT reveals that learning a proper coordinate system for neurons is crucial to generalization. We provide some insights on why OPT yields better generalization. Extensive experiments validate the superiority of OPT over the standard training.
The success of deep learning is due, to a large extent, to the remarkable effectiveness of gradient-based optimization methods applied to large neural networks. The purpose of this work is to propose a modern view and a general mathematical framework for loss landscapes and efficient optimization in over-parameterized machine learning models and systems of non-linear equations, a setting that includes over-parameterized deep neural networks. Our starting observation is that optimization problems corresponding to such systems are generally not convex, even locally. We argue that instead they satisfy PL$^*$, a variant of the Polyak-Lojasiewicz condition on most (but not all) of the parameter space, which guarantees both the existence of solutions and efficient optimization by (stochastic) gradient descent (SGD/GD). The PL$^*$ condition of these systems is closely related to the condition number of the tangent kernel associated to a non-linear system showing how a PL$^*$-based non-linear theory parallels classical analyses of over-parameterized linear equations. We show that wide neural networks satisfy the PL$^*$ condition, which explains the (S)GD convergence to a global minimum. Finally we propose a relaxation of the PL$^*$ condition applicable to almost over-parameterized systems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا