ﻻ يوجد ملخص باللغة العربية
A complete understanding of the widely used over-parameterized deep networks is a key step for AI. In this work we try to give a geometric picture of over-parameterized deep networks using our geometrization scheme. We show that the Riemannian geometry of network complexity plays a key role in understanding the basic properties of over-parameterizaed deep networks, including the generalization, convergence and parameter sensitivity. We also point out deep networks share lots of similarities with quantum computation systems. This can be regarded as a strong support of our proposal that geometrization is not only the bible for physics, it is also the key idea to understand deep learning systems.
How to understand deep learning systems remains an open problem. In this paper we propose that the answer may lie in the geometrization of deep networks. Geometrization is a bridge to connect physics, geometry, deep network and quantum computation an
One of the mysteries in the success of neural networks is randomly initialized first order methods like gradient descent can achieve zero training loss even though the objective function is non-convex and non-smooth. This paper demystifies this surpr
We consider training over-parameterized two-layer neural networks with Rectified Linear Unit (ReLU) using gradient descent (GD) method. Inspired by a recent line of work, we study the evolutions of network prediction errors across GD iterations, whic
The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great importance. We propose a novel orthogonal over-paramete
The success of deep learning is due, to a large extent, to the remarkable effectiveness of gradient-based optimization methods applied to large neural networks. The purpose of this work is to propose a modern view and a general mathematical framework