ﻻ يوجد ملخص باللغة العربية
Atmospheric parameters determined via spectral modelling are unavailable for many of the known magnetic early B-type stars. We utilized high-resolution spectra together with NLTE models to measure effective temperatures $T_{rm eff}$ and surface gravities $log{g}$ of stars for which these measurements are not yet available. We find good agreement between our $T_{rm eff}$ measurements and previous results obtained both photometrically and spectroscopically. For $log{g}$, our results are compatible with previous spectroscopic measurements; however, surface gravities of stars previously determined photometrically have been substantially revised. We furthermore find that $log{g}$ measurements obtained with HARPSpol are typically about 0.1 dex lower than those from comparable instruments. Luminosities were determined using Gaia Data Release 2 parallaxes. We find Gaia parallaxes to be unreliable for bright stars ($V<6$ mag) and for binaries; in these cases we reverted to Hipparcos parallaxes. In general we find luminosities systematically lower than those previously reported. Comparison of $log{g}$ and $log{L}$ to available rotational and magnetic measurements shows no correlation between either parameter with magnetic data, but a clear slow-down in rotation with both decreasing $log{g}$ and increasing $log{L}$, a result compatible with the expectation that magnetic braking should lead to rapid magnetic spindown that accelerates with increasing mass-loss.
The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric para
Stellar clusters are important for astrophysics in many ways, for instance as optimal tracers of the Galactic populations to which they belong or as one of the best test bench for stellar evolutionary models. Gaia DR1, with TGAS, is just skimming the
The powerful radiative winds of hot stars with strong magnetic fields are magnetically confined into large, corotating magnetospheres, which exert important influences on stellar evolution via rotational spindown and mass-loss quenching. They are det
Angular momentum is a key property regulating star formation and evolution. However, the physics driving the distribution of the stellar rotation rates of early-type main-sequence stars is as yet poorly understood. Using our catalog of 40,034 early-t
Magnetic confinement of stellar winds leads to the formation of magnetospheres, which can be sculpted into Centrifugal Magnetospheres (CMs) by rotational support of the corotating plasma. The conditions required for the CMs of magnetic early B-type s