ترغب بنشر مسار تعليمي؟ اضغط هنا

Violent relaxation in the Hamiltonian Mean Field model: I. Cold collapse and effective dissipation

64   0   0.0 ( 0 )
 نشر من قبل Lapo Casetti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In $N$-body systems with long-range interactions mean-field effects dominate over binary interactions (collisions), so that relaxation to thermal equilibrium occurs on time scales that grow with $N$, diverging in the $Ntoinfty$ limit. However, a faster and non-collisional relaxation process, referred to as violent relaxation, sets in when starting from generic initial conditions: collective oscillations (referred to as virial oscillations) develop and damp out on timescales not depending on the systems size. After the damping of such oscillations the system is found in a quasi-stationary state that survives virtually forever when the system is very large. During violent relaxation the distribution function obeys the collisionless Boltzmann (or Vlasov) equation, that, being invariant under time reversal, does not naturally describe a relaxation process. Indeed, the dynamics is moved to smaller and smaller scales in phase space as time goes on, so that observables that do not depend on small-scale details appear as relaxed after a short time. We propose an approximation scheme to describe collisionless relaxation, based on the introduction of moments of the distribution function, and apply it to the Hamiltonian Mean Field (HMF) model. To the leading order, virial oscillations are equivalent to the motion of a particle in a one-dimensional potential. Inserting higher-order contributions in an effective way, inspired by the Caldeira-Leggett model of quantum dissipation, we derive a dissipative equation describing the damping of the oscillations, including a renormalization of the effective potential and yielding predictions for collective properties of the system after the damping in very good agreement with numerical simulations. Here we restrict ourselves to cold initial conditions; generic initial conditions will be considered in a forthcoming paper.



قيم البحث

اقرأ أيضاً

A classical long-range-interacting $N$-particle system relaxes to thermal equilibrium on time scales growing with $N$; in the limit $Nto infty$ such a relaxation time diverges. However, a completely non-collisional relaxation process, known as violen t relaxation, takes place on a much shorter time scale independent of $N$ and brings the system towards a non-thermal quasi-stationary state. A finite system will eventually reach thermal equilibrium, while an infinite system will remain trapped in the quasi-stationary state forever. For times smaller than the relaxation time the distribution function of the system obeys the collisionless Boltzmann equation, also known as the Vlasov equation. The Vlasov dynamics is invariant under time reversal so that it does not naturally describe a relaxational dynamics. However, as time grows the dynamics affects smaller and smaller scales in phase space, so that observables not depending upon small-scale details appear as relaxed after a short time. Herewith we present an approximation scheme able to describe violent relaxation in a one-dimensional toy-model, the Hamiltonian Mean Field (HMF). The approach described here generalizes the one proposed in G. Giachetti and L. Casetti, J. Stat. Mech.: Theory Exp. 2019, 043201 (2019), that was limited to cold initial conditions, to generic initial conditions, allowing us to to predict non-equilibrium phase diagrams that turn out to be in good agreement with those obtained from the numerical integration of the Vlasov equation.
We consider a modification of the well studied Hamiltonian Mean-Field model by introducing a hard-core point-like repulsive interaction and propose a numerical integration scheme to integrate numerically its dynamics. Our results show that the outcom e of the initial violent relaxation is altered, and also that the phase-diagram is modified with a critical temperature at a higher value than in the non-collisional counterpart.
64 - N.Fusco , M.Zannetti 2002
The problem of the equivalence of the spherical and mean spherical models, which has been thoroughly studied and understood in equilibrium, is considered anew from the dynamical point of view during the time evolution following a quench from above to below the critical temperature. It is found that there exists a crossover time $t^* sim V^{2/d}$ such that for $t < t^*$ the two models are equivalent, while for $t > t^*$ macroscopic discrepancies arise. The relation between the off equilibrium response function and the structure of the equilibrium state, which usually holds for phase ordering systems, is found to hold for the spherical model but not for the mean spherical one. The latter model offers an explicit example of a system which is not stochastically stable.
We study the dynamics of the N-particle system evolving in the XY hamiltonian mean field (HMF) model for a repulsive potential, when no phase transition occurs. Starting from a homogeneous distribution, particles evolve in a mean field created by the interaction with all others. This interaction does not change the homogeneous state of the system, and particle motion is approximately ballistic with small corrections. For initial particle data approaching a waterbag, it is explicitly proved that corrections to the ballistic velocities are in the form of independent brownian noises over a time scale diverging not slower than $N^{2/5}$ as $N to infty$, which proves the propagation of molecular chaos. Molecular dynamics simulations of the XY-HMF model confirm our analytical findings.
We propose a mean field theory for the localization of damage in a quasistatic fuse model on a cylinder. Depending on the quenched disorder distribution of the fuse thresholds, we show analytically that the system can either stay in a percolation reg ime up to breakdown, or start at some current level to localize starting from the smallest scale (lattice spacing), or instead go to a diffuse localization regime where damage starts to concentrate in bands of width scaling as the width of the system, but remains diffuse at smaller scales. Depending on the nature of the quenched disorder on the fuse thresholds, we derive analytically the phase diagram of the system separating these regimes and the current levels for the onset of these possible localizations. We compare these predictions to numerical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا