ترغب بنشر مسار تعليمي؟ اضغط هنا

Vignette: Perceptual Compression for Video Storage and Processing Systems

216   0   0.0 ( 0 )
 نشر من قبل Amrita Mazumdar
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Compressed videos constitute 70% of Internet traffic, and video upload growth rates far outpace compute and storage improvement trends. Past work in leveraging perceptual cues like saliency, i.e., regions where viewers focus their perceptual attention, reduces compressed video size while maintaining perceptual quality, but requires significant changes to video codecs and ignores the data management of this perceptual information. In this paper, we propose Vignette, a compression technique and storage manager for perception-based video compression. Vignette complements off-the-shelf compression software and hardware codec implementations. Vignettes compression technique uses a neural network to predict saliency information used during transcoding, and its storage manager integrates perceptual information into the video storage system to support a perceptual compression feedback loop. Vignettes saliency-based optimizations reduce storage by up to 95% with minimal quality loss, and Vignette videos lead to power savings of 50% on mobile phones during video playback. Our results demonstrate the benefit of embedding information about the human visual system into the architecture of video storage systems.



قيم البحث

اقرأ أيضاً

231 - Fan Zhang , David R. Bull 2021
This paper describes a quality assessment model for perceptual video compression applications (PVM), which stimulates visual masking and distortion-artefact perception using an adaptive combination of noticeable distortions and blurring artefacts. Th e method shows significant improvement over existing quality metrics based on the VQEG database, and provides compatibility with in-loop rate-quality optimisation for next generation video codecs due to its latency and complexity attributes. Performance comparison are validated against a range of different distortion types.
154 - Shaowei Xie , Qiu Shen , Yiling Xu 2018
Immersive video offers the freedom to navigate inside virtualized environment. Instead of streaming the bulky immersive videos entirely, a viewport (also referred to as field of view, FoV) adaptive streaming is preferred. We often stream the high-qua lity content within current viewport, while reducing the quality of representation elsewhere to save the network bandwidth consumption. Consider that we could refine the quality when focusing on a new FoV, in this paper, we model the perceptual impact of the quality variations (through adapting the quantization stepsize and spatial resolution) with respect to the refinement duration, and yield a product of two closed-form exponential functions that well explain the joint quantization and resolution induced quality impact. Analytical model is cross-validated using another set of data, where both Pearson and Spearmans rank correlation coefficients are close to 0.98. Our work is devised to optimize the adaptive FoV streaming of the immersive video under limited network resource. Numerical results show that our proposed model significantly improves the quality of experience of users, with about 9.36% BD-Rate (Bjontegaard Delta Rate) improvement on average as compared to other representative methods, particularly under the limited bandwidth.
Feature coding has been recently considered to facilitate intelligent video analysis for urban computing. Instead of raw videos, extracted features in the front-end are encoded and transmitted to the back-end for further processing. In this article, we present a lossless key-point sequence compression approach for efficient feature coding. The essence of this predict-and-encode strategy is to eliminate the spatial and temporal redundancies of key points in videos. Multiple prediction modes with an adaptive mode selection method are proposed to handle key-point sequences with various structures and motion. Experimental results validate the effectiveness of the proposed scheme on four types of widely used key-point sequences in video analysis.
171 - Anique Akhtar , Wen Gao , Li Li 2021
Photo-realistic point cloud capture and transmission are the fundamental enablers for immersive visual communication. The coding process of dynamic point clouds, especially video-based point cloud compression (V-PCC) developed by the MPEG standardiza tion group, is now delivering state-of-the-art performance in compression efficiency. V-PCC is based on the projection of the point cloud patches to 2D planes and encoding the sequence as 2D texture and geometry patch sequences. However, the resulting quantization errors from coding can introduce compression artifacts, which can be very unpleasant for the quality of experience (QoE). In this work, we developed a novel out-of-the-loop point cloud geometry artifact removal solution that can significantly improve reconstruction quality without additional bandwidth cost. Our novel framework consists of a point cloud sampling scheme, an artifact removal network, and an aggregation scheme. The point cloud sampling scheme employs a cube-based neighborhood patch extraction to divide the point cloud into patches. The geometry artifact removal network then processes these patches to obtain artifact-removed patches. The artifact-removed patches are then merged together using an aggregation scheme to obtain the final artifact-removed point cloud. We employ 3D deep convolutional feature learning for geometry artifact removal that jointly recovers both the quantization direction and the quantization noise level by exploiting projection and quantization prior. The simulation results demonstrate that the proposed method is highly effective and can considerably improve the quality of the reconstructed point cloud.
This paper proposes a Perceptual Learned Video Compression (PLVC) approach with recurrent conditional generative adversarial network. In our approach, the recurrent auto-encoder-based generator learns to fully explore the temporal correlation for com pressing video. More importantly, we propose a recurrent conditional discriminator, which judges raw and compressed video conditioned on both spatial and temporal information, including the latent representation, temporal motion and hidden states in recurrent cells. This way, in the adversarial training, it pushes the generated video to be not only spatially photo-realistic but also temporally consistent with groundtruth and coherent among video frames. The experimental results show that the proposed PLVC model learns to compress video towards good perceptual quality at low bit-rate, and outperforms the previous traditional and learned approaches on several perceptual quality metrics. The user study further validates the outstanding perceptual performance of PLVC in comparison with the latest learned video compression approaches and the official HEVC test model (HM 16.20). The codes will be released at https://github.com/RenYang-home/PLVC.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا