ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the symmetry and symmetry breaking properties of a two-dimensional magnetic Schr{o}dinger operator involving an Aharonov-Bohm magnetic vector potential. We investigate the symmetry properties of the optimal potential for the corresponding magnetic Keller-Lieb-Thir-ring inequality. We prove that this potential is radially symmetric if the intensity of the magnetic field is below an explicit threshold, while symmetry is broken above a second threshold corresponding to a higher magnetic field. The method relies on the study of the magnetic kinetic energy of the wave function and amounts to study the symmetry properties of the optimal functions in a magnetic Hardy-Sobolev interpolation inequality. We give a quantified range of symmetry by a non-perturbative method. To establish the symmetry breaking range, we exploit the coupling of the phase and of the modulus and also obtain a quantitative result.
This paper is devoted to a collection of results on nonlinear interpolation inequalities associated with Schr{o}dinger operators involving Aharonov-Bohm magnetic potentials, and to some consequences. As symmetry plays an important role for establishi
We give fully explicit upper and lower bounds for the constants in two known inequalities related to the quadratic nonlinearity of the incompressible (Euler or) Navier-Stokes equations on the torus T^d. These inequalities are tame generalizations (in
We show that a proper consideration of the contribution of Trugman loops leads to a fairly low effective mass for a hole moving in a square lattice Ising antiferromagnet, if the bare hopping and the exchange energy scales are comparable. This contrad
We show that the Aharonov-Bohm effect finds a natural description in the setting of QFT on curved spacetimes in terms of superselection sectors of local observables. The extension of the analysis of superselection sectors from Minkowski spacetime to
In this work we study Dirac operators on two-dimensional domains coupled to a magnetic field perpendicular to the plane. We focus on the infinite-mass boundary condition (also called MIT bag condition). In the case of bounded domains, we establish th