ترغب بنشر مسار تعليمي؟ اضغط هنا

State Estimation over Worst-Case Erasure and Symmetric Channels with Memory

78   0   0.0 ( 0 )
 نشر من قبل Amir Saberi
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Worst-case models of erasure and symmetric channels are investigated, in which the number of channel errors occurring in each sliding window of a given length is bounded. Upper and lower bounds on their zero-error capacities are derived, with the lower bounds revealing a connection with the topological entropy of the channel dynamics. Necessary and sufficient conditions for linear state estimation with bounded estimation errors via such channels are then obtained, by extending previous results for non-stochastic memoryless channels to those with finite memory. These estimation conditions involve the topological entropies of the linear system and the channel.



قيم البحث

اقرأ أيضاً

Stochastic stability for centralized time-varying Kalman filtering over a wireles ssensor network with correlated fading channels is studied. On their route to the gateway, sensor packets, possibly aggregated with measurements from several nodes, may be dropped because of fading links. To study this situation, we introduce a network state process, which describes a finite set of configurations of the radio environment. The network state characterizes the channel gain distributions of the links, which are allowed to be correlated between each other. Temporal correlations of channel gains are modeled by allowing the network state process to form a (semi-)Markov chain. We establish sufficient conditions that ensure the Kalman filter to be exponentially bounded. In the one-sensor case, this new stability condition is shown to include previous results obtained in the literature as special cases. The results also hold when using power and bit-rate control policies, where the transmission power and bit-rate of each node are nonlinear mapping of the network state and channel gains.
Although state estimation in networked control systems is a fundamental problem, few efforts have been made to study distributed state estimation via multiple access channels (MACs). In this article, we give a characterization of the zero-error capac ity region of an M-input, single-output MAC at any finite block-length. To this end, nonstochastic information-theoretic tools are used to derive the converse and achievability proofs. Next, a tight condition to be able to achieve uniformly bounded state estimation errors over such a MAC is provided. The obtained condition establishes a connection between the intrinsic topological entropies of the linear systems and the zero-error capacity region of the MAC.
We consider a fundamental remote state estimation problem of discrete-time linear time-invariant (LTI) systems. A smart sensor forwards its local state estimate to a remote estimator over a time-correlated $M$-state Markov fading channel, where the p acket drop probability is time-varying and depends on the current fading channel state. We establish a necessary and sufficient condition for mean-square stability of the remote estimation error covariance as $rho^2(mathbf{A})rho(mathbf{DM})<1$, where $rho(cdot)$ denotes the spectral radius, $mathbf{A}$ is the state transition matrix of the LTI system, $mathbf{D}$ is a diagonal matrix containing the packet drop probabilities in different channel states, and $mathbf{M}$ is the transition probability matrix of the Markov channel states. To derive this result, we propose a novel estimation-cycle based approach, and provide new element-wise bounds of matrix powers. The stability condition is verified by numerical results, and is shown more effective than existing sufficient conditions in the literature. We observe that the stability region in terms of the packet drop probabilities in different channel states can either be convex or concave depending on the transition probability matrix $mathbf{M}$. Our numerical results suggest that the stability conditions for remote estimation may coincide for setups with a smart sensor and with a conventional one (which sends raw measurements to the remote estimator), though the smart sensor setup achieves a better estimation performance.
We consider remote state estimation of multiple discrete-time linear time-invariant (LTI) systems over multiple wireless time-varying communication channels. Each system state is measured by a sensor, and the measurements from sensors are sent to a r emote estimator over the shared wireless channels in a scheduled manner. We answer the following open problem: what is the fundamental requirement on the multi-sensor-multi-channel system to guarantee the existence of a sensor scheduling policy that can stabilize the remote estimation system? To tackle the problem, we propose a novel policy construction method, and develop a new analytical approach by applying the asymptotic theory of spectral radii of products of non-negative matrices. A necessary and sufficient stability condition is derived in terms of the LTI system parameters and the channel statistics, which is more effective than existing sufficient conditions available in the literature. Explicit scheduling policies with stability guarantees are presented as well. We further extend the analytical framework to cover remote estimation with four alternative network setups and obtain corresponding necessary and sufficient stability conditions.
A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links conne cting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا