ﻻ يوجد ملخص باللغة العربية
Semiconducting piezoelectric materials have attracted considerable interest due to their central role in the emerging field of piezotronics, where the development of a piezo-potential in response to stress or strain can be used to tune the band structure of the semiconductor, and hence its electronic properties. This coupling between piezoelectricity and semiconducting properties can be readily exploited for force or pressure sensing using nanowires, where the geometry and unclamped nature of nanowires render them particularly sensitive to small forces. At the same time, piezoelectricity is known to manifest more strongly in nanowires of certain semiconductors. Here, we report the design and fabrication of highly sensitive piezotronic pressure sensors based on GaAs nanowire ensemble sandwiched between two electrodes in a back-to-back diode configuration. We analyse the current-voltage characteristics of these nanowire-based devices in response to mechanical loading in light of the corresponding changes to the device band structure. We observe a high piezotronic sensitivity to pressure, of ~7800 meV/MPa. We attribute this high sensitivity to the nanowires being fully depleted due to the lack of doping, as well as due to geometrical pressure focusing and current funneling through polar interfaces.
The high flexibility, impermeability and strength of graphene membranes are key properties that can enable the next generation of nanomechanical sensors. However, for capacitive pressure sensors the sensitivity offered by a single suspended graphene
We realize squeeze film pressure sensors using suspended, high mechanical quality silicon nitride membranes forming few-micron gap sandwiches. The effects of air pressure on the mechanical vibrations of the membranes are investigated in the range 10^
We present a design for a piezoelectric-driven uniaxial stress cell suitable for use at ambient and cryogenic temperatures, and that incorporates both a displacement and a force sensor. The cell has a diameter of 46 mm and a height of 13 mm. It can a
The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using sus
A highly sensitive refractive index sensor based on grating-assisted strip waveguide directional coupler is proposed. The sensor is designed using two coupled asymmetric strip waveguides with a top-loaded grating structure in one of the waveguides. M