ﻻ يوجد ملخص باللغة العربية
The study of the long-dead early generations of massive stars is crucial in order to obtain a complete picture of the chemical evolution of the Universe, hence the origin of the elements. The nature of these stars can be inferred indirectly by investigating the origin of low-mass metal-poor stars observed in our Galaxy, some of which are almost as old as the Universe. The peculiar extremely iron-poor Carbon-Enhanced Metal-Poor (CEMP) stars, whose precise origin is still debated, are thought to have formed with the material ejected by only one or very few previous massive stars. The main aim of this thesis is to explore the physics and the nucleosynthesis of the early generations of massive stars. It is achieved by combining stellar evolution modeling including rotation and full nucleosynthesis with observations of CEMP stars.
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well understood. The most widely accepted formation scenario, invokes mass-transfer of carbon-rich mate
The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which 7 Carbon-Enhanced Metal-Poor (CEMP) stars and 6 CH stars. All stars but one show clear evid
The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-poor (EMP) stars with [Fe/H] leq -2.5 share the common features of carbon enhan
Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of th