We study heat transport in a gas of one-dimensional fermions in the presence of a small temperature gradient. At temperatures well below the Fermi energy there are two types of relaxation processes in this system, with dramatically different relaxation rates. As a result, in addition to the usual thermal conductivity, one can introduce the thermal conductivity of the gas of elementary excitations, which quantifies the dissipation in the system in the broad range of frequencies between the two relaxation rates. We develop a microscopic theory of these transport coefficients in the limit of weak interactions between the fermions.