ﻻ يوجد ملخص باللغة العربية
We have carried out survey observations of molecular emission lines from HC$_{3}$N, N$_{2}$H$^{+}$, CCS, and cyclic-C$_{3}$H$_{2}$ in the 81$-$94 GHz band toward 17 high-mass starless cores (HMSCs) and 28 high-mass protostellar objects (HMPOs) with the Nobeyama 45-m radio telescope. We have detected N$_{2}$H$^{+}$ in all of the target sources except one and HC$_{3}$N in 14 HMSCs and in 26 HMPOs. We investigate the $N$(N$_{2}$H$^{+}$)/$N$(HC$_{3}$N) column density ratio as a chemical evolutionary indicator of massive cores. Using the Kolmogorov-Smirnov (K-S) test and Welchs t test, we confirm that the $N$(N$_{2}$H$^{+}$)/$N$(HC$_{3}$N) ratio decreases from HMSCs to HMPOs. This tendency in high-mass star-forming regions is opposite to that in low-mass star-forming regions. Furthermore, we found that the detection rates of carbon-chain species (HC$_{3}$N, HC$_{5}$N, and CCS) in HMPOs are different from those in low-mass protostars. The detection rates of cyanopolyynes (HC$_{3}$N and HC$_{5}$N) are higher and that of CCS is lower in high-mass protostars, compared to low-mass protostars. We discuss a possible interpretation for these differences.
Young massive stars are usually found embedded in dense and massive molecular clumps and are known for being highly obscured and distant. During their formation process, deuteration is regarded as a potentially good indicator of the formation stage.
We report the identification of a sample of potential High-Mass Starless Cores (HMSCs). The cores were discovered by comparing images of the fields containing candidate High-Mass Protostellar Objects (HMPOs) at 1.2mm and mid-infrared (8.3um; MIR) wav
The role of accretion disks in the formation of low-mass stars has been well assessed by means of high angular resolution observations at various wavelengths. These findings confirm the prediction that conservation of angular momentum during the coll
We present the study of deuteration of cyanoacetylene (HC$_3$N) towards a sample of 28 high-mass star-forming cores divided into different evolutionary stages, from starless to evolved protostellar cores. We report for the first time the detection of
Nitrogen (N) fractionation is used as a tool to search for a link between the chemical history of the Solar System and star-forming regions. A large variation of $^{14}$N/$^{15}$N is observed towards different astrophysical sources, and current chemi