ﻻ يوجد ملخص باللغة العربية
This paper presents a detailed investigation of superconducting nanowire single-photon detectors (SNSPDs) biased with microwave and direct currents. We developed a hybrid detector, which allows the operation in the rf and dc operation mode. With this hybrid detector, we are able to compare the count rates of the same nanowire biased with dc and rf currents. Furthermore, we demonstrate the use of the oscillating current in the rf operation mode as a reference signal in a synchronous single-photon detection mode.
Superconducting nanowires are widely used as sensitive single photon detectors with wide spectral coverage and high timing resolution. We describe a demonstration of an array of DC biased superconducting nanowire single photon detectors read out with
In the paper, a comparison is described of the microwave power standard based on thermoelectric sensors against an analogous standard based on bolometric sensors. Measurements have been carried out with the classical twin-type microcalorimeter, fitte
As noble liquid time projection chambers grow in size their high voltage requirements increase, and detailed, reproducible studies of dielectric breakdown and the onset of electroluminescence are needed to inform their design. The Xenon Breakdown App
A large number of particle detectors employ liquid argon as their target material owing to its high scintillation yield and its ability to drift ionization charge for large distances. Scintillation light from argon is peaked at 128 nm and a wavelengt
The phase noise and frequency stability measurements of 1 GHz, 100 MHz, and 10 MHz signals are presented which have been synthesized from microwave cryogenic sapphire oscillators using ultra-low-vibration pulse-tube cryocooler technology. We present