We present a simple theory of thermoelectric transport in bilayer graphene and report our results for the electrical resistivity, the thermal resistivity, the Seebeck coefficient, and the Wiedemann-Franz ratio as functions of doping density and temperature. In the absence of disorder, the thermal resistivity tends to zero as the charge neutrality point is approached; the electric resistivity jumps from zero to an intrinsic finite value, and the Seebeck coefficient diverges in the same limit. Even though these results are similar to those obtained for single-layer graphene, their derivation is considerably more delicate. The singularities are removed by the inclusion of a small amount of disorder, which leads to the appearance of a window of doping densities $0<n<n_c$ (with $n_c$ tending to zero in the zero-disorder limit) in which the Wiedemann-Franz law is severely violated.