We present progress on an ongoing calculation of the $B_sto D_s^{(*)} l u$ form factors calculated on the $n_f=2+1+1$ MILC ensembles and using the Highly Improved Staggered Quark action for all valence quarks. We perform the calculation at a range of $b$ quark masses (and lattice spacings) so that we can extrapolate to the physical $b$-quark mass.
We present details of a lattice QCD calculation of the $B_sto D_s^*$ axial form factor at zero recoil using the Highly Improved Staggered Quark (HISQ) formalism on the second generation MILC gluon ensembles that include up, down, strange and charm qu
arks in the sea. Using the HISQ action for all valence quarks means that the lattice axial vector current that couples to the $W$ can be renormalized fully non-perturbatively, giving a result free of the perturbative matching errors that previous lattice QCD calculations have had. We calculate correlation functions at three values of the lattice spacing, and multiple `$b$-quark masses, for physical $c$ and $s$. The functional dependence on the $b$-quark mass can be determined and compared to Heavy Quark Effective Theory expectations, and a result for the form factor obtained at the physical value of the $b$-quark mass. We find $mathcal{F}^{B_sto D_s^*}(1) = h^s_{A_1}(1) = 0.9020(96)_{text{stat}}(90)_{text{sys}}$. This is in agreement with earlier lattice QCD results, which use NRQCD $b$ quarks, with a total uncertainty reduced by more than a factor of two. We discuss implications of this result for the $Bto D^*$ axial form factor at zero recoil and for determinations of $V_{cb}$.
We discuss our ongoing effort to calculate form factors for several B and Bs semileptonic decays. We have recently completed the first unquenched calculation of the form factors for the rare decay B -> K ll. Extrapolated over the full kinematic range
of q^2 via model-independent z expansion, these form factor results allow us to calculate several Standard Model observables. We compare with experiment (Belle, BABAR, CDF, and LHCb) where possible and make predictions elsewhere. We discuss preliminary results for Bs -> K l nu which, when combined with anticipated experimental results, will provide an alternative exclusive determination of |Vub|. We are exploring the possibility of using ratios of form factors for this decay with those for the unphysical decay Bs -> eta_s as a means of significantly reducing form factor errors. We are also studying B -> pi l nu, form factors for which are combined with experiment in the standard exclusive determination of |Vub|. Our simulations use NRQCD heavy and HISQ light valence quarks on the MILC 2+1 dynamical asqtad configurations.
We present a lattice QCD determination of the $B_s to D_s ell u$ scalar and vector form factors over the full physical range of momentum transfer. The result is derived from correlation functions computed using the Highly Improved Staggered Quark (HI
SQ) formalism, on the second generation MILC gluon ensembles accounting for up, down, strange and charm contributions from the sea. We calculate correlation functions for three lattice spacing values and an array of unphysically light $b$-quark masses, and extrapolate to the physical value. Using the HISQ formalism for all quarks means that the lattice current coupling to the $W$ can be renormalized non-perturbatively, giving a result free from perturbative matching errors for the first time. Our results are in agreement with, and more accurate than, previous determinations of these form factors. From the form factors we also determine the ratio of branching fractions that is sensitive to violation of lepton universality: $R(D_s) = mathcal{B}(B_sto D_s tau u_{tau})/mathcal{B}(B_sto D_s ell u_{l})$, where $ell$ is an electron or a muon. We find $R(D_s) = 0.2987(46)$, which is also more accurate than previous lattice QCD results. Combined with a future measurement of $R(D_s)$, this could supply a new test of the Standard Model. We also compare the dependence on heavy quark mass of our form factors to expectations from Heavy Quark Effective Theory.
We report on our calculation of the B to D^(*) ell u form factors in 2+1 flavor lattice QCD. The Mobius domain-wall action is employed for light, strange, charm and bottom quarks. At lattice cutoffs 1/a sim 2.4, 3.6 and 4.5 GeV, we simulate bottom q
uark masses up to 0.7/a to control discretization errors. The pion mass is as low as 230 MeV. We extrapolate the form factors to the continuum limit and physical quark masses, and make a comparison with recent phenomenological analyses.
We report on the status of our kaon semileptonic form factor calculations using the highly-improved staggered quark (HISQ) formulation to simulate the valence fermions. We present results for the form factor f_+^{K pi}(0) on the asqtad N_f=2+1 MILC c
onfigurations, discuss the chiral-continuum extrapolation, and give a preliminary estimate of the total error. We also present a more preliminary set of results for the same form factor but with the sea quarks also simulated with the HISQ action; these results include data at the physical light quark masses. The improvements that we expect to achieve with the use of the HISQ configurations and simulations at the physical quark masses are briefly discussed.