ﻻ يوجد ملخص باللغة العربية
We present an operator based factorization formula for the transverse energy-energy correlator (TEEC) hadron collider event shape in the back-to-back (dijet) limit. This factorization formula exhibits a remarkably symmetric form, being a projection onto a scattering plane of a more standard transverse momentum dependent factorization. Soft radiation is incorporated through a dijet soft function, which can be elegantly obtained to next-to-next-to-leading order (NNLO) due to the symmetries of the problem. We present numerical results for the TEEC resummed to next-to-next-to-leading logarithm (NNLL) matched to fixed order at the LHC. Our results constitute the first NNLL resummation for a dijet event shape observable at a hadron collider, and the first analytic result for a hadron collider dijet soft function at NNLO. We anticipate that the theoretical simplicity of the TEEC observable will make it indispensable for precision studies of QCD at the LHC, and as a playground for theoretical studies of factorization and its violation.
We present the analytic formula for the Energy-Energy Correlation (EEC) in electron-positron annihilation computed in perturbative QCD to next-to-next-to-next-to-leading order (N$^3$LO) in the back-to-back limit. In particular, we consider the EEC ar
The energy-energy-correlator (EEC) observable in $e^+e^-$ annihilation measures the energy deposited in two detectors as a function of the angle between the detectors. The collinear limit, where the angle between the two detectors approaches zero, is
Dark Energy is currently one of the biggest mysteries in science. In this article the origin of the concept is traced as far back as Newton and Hooke in the seventeenth century. Newton considered, along with the inverse square law, a force of attract
$textbf{Background:}$ The chiral magnetic effect (CME) is extensively studied in heavy-ion collisions at RHIC and LHC. In the commonly used reaction plane (RP) dependent, charge dependent azimuthal correlator ($Deltagamma$), both the close and back-t
We derive and solve renormalization group equations that allow for the resummation of subleading power rapidity logarithms. Our equations involve operator mixing into a new class of operators, which we term the rapidity identity operators, that will