ﻻ يوجد ملخص باللغة العربية
Dynamic affinity load balancing of multi-type tasks on multi-skilled servers, when the service rate of each task type on each of the servers is known and can possibly be different from each other, is an open problem for over three decades. The goal is to do task assignment on servers in a real time manner so that the system becomes stable, which means that the queue lengths do not diverge to infinity in steady state (throughput optimality), and the mean task completion time is minimized (delay optimality). The fluid model planning, Max-Weight, and c-$mu$-rule algorithms have theoretical guarantees on optimality in some aspects for the affinity problem, but they consider a complicated queueing structure and either require the task arrival rates, the service rates of tasks on servers, or both. In many cases that are discussed in the introduction section, both task arrival rates and service rates of different task types on different servers are unknown. In this work, the Blind GB-PANDAS algorithm is proposed which is completely blind to task arrival rates and service rates. Blind GB-PANDAS uses an exploration-exploitation approach for load balancing. We prove that Blind GB-PANDAS is throughput optimal under arbitrary and unknown distributions for service times of different task types on different servers and unknown task arrival rates. Blind GB-PANDAS desires to route an incoming task to the server with the minimum weighted-workload, but since the service rates are unknown, such routing of incoming tasks is not guaranteed which makes the throughput optimality analysis more complicated than the case where service rates are known. Our extensive experimental results reveal that Blind GB-PANDAS significantly outperforms existing methods in terms of mean task completion time at high loads.
Dynamic affinity scheduling has been an open problem for nearly three decades. The problem is to dynamically schedule multi-type tasks to multi-skilled servers such that the resulting queueing system is both stable in the capacity region (throughput
We consider the load balancing problem in large-scale heterogeneous systems with multiple dispatchers. We introduce a general framework called Local-Estimation-Driven (LED). Under this framework, each dispatcher keeps local (possibly outdated) estima
The recently created IETF 6TiSCH working group combines the high reliability and low-energy consumption of IEEE 802.15.4e Time Slotted Channel Hopping with IPv6 for industrial Internet of Things. We propose a distributed link scheduling algorithm, ca
We present the Signal Detection using Random-Forest Algorithm (SIDRA). SIDRA is a detection and classification algorithm based on the Machine Learning technique (Random Forest). The goal of this paper is to show the power of SIDRA for quick and accur
This paper first presents a parallel solution for the Flowshop Scheduling Problem in parallel environment, and then proposes a novel load balancing strategy. The proposed Proportional Fairness Strategy (PFS) takes computational performance of computi