ﻻ يوجد ملخص باللغة العربية
Local, bulk response functions, e.g permittivity, and the macroscopic Maxwell equations completely specify the classical electromagnetic problem, which features only wavelength $lambda$ and geometric scales. The above neglect of intrinsic electronic length scales $L_{text{e}}$ leads to an eventual breakdown in the nanoscopic limit. Here, we present a general theoretical and experimental framework for treating nanoscale electromagnetic phenomena. The framework features surface-response functions---known as the Feibelman $d$-parameters---which reintroduce the missing electronic length scales. As a part of our framework, we establish an experimental procedure to measure these complex, dispersive surface response functions, enabled by quasi-normal-mode perturbation theory and observations of pronounced nonclassical effects---spectral shifts in excess of 30% and the breakdown of Kreibig-like broadening---in a quintessential multiscale architecture: film-coupled nanoresonators, with feature-sizes comparable to both $L_{text{e}}$ and $lambda$.
Nonlinear optical (NLO) phenomena such as harmonic generation, Kerr, and Pockels effects are of great technological importance for lasers, frequency converters, modulators, switches, etc. Recently, two-dimensional (2D) materials have drawn significan
Magnetic skyrmions have attracted considerable interest, especially after their recent experimental demonstration at room temperature in multilayers. The robustness, nanoscale size and non-volatility of skyrmions have triggered a substantial amount o
We report a self-consistent quasinormal mode theory for nanometer scale electromagnetism where the possible nonlocal and quantum effects are treated through quantum surface responses. With Feibelmans frequency-dependent textit{d} parameters to descri
This paper presents the design and fabrication of batch-processed cantilever probes with electrical shielding for scanning microwave impedance microscopy. The diameter of the tip apex, which defines the electrical resolution, is less than 50 nm. The
Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material