ترغب بنشر مسار تعليمي؟ اضغط هنا

A General Theoretical and Experimental Framework for Nanoscale Electromagnetism

121   0   0.0 ( 0 )
 نشر من قبل Yi Yang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Local, bulk response functions, e.g permittivity, and the macroscopic Maxwell equations completely specify the classical electromagnetic problem, which features only wavelength $lambda$ and geometric scales. The above neglect of intrinsic electronic length scales $L_{text{e}}$ leads to an eventual breakdown in the nanoscopic limit. Here, we present a general theoretical and experimental framework for treating nanoscale electromagnetic phenomena. The framework features surface-response functions---known as the Feibelman $d$-parameters---which reintroduce the missing electronic length scales. As a part of our framework, we establish an experimental procedure to measure these complex, dispersive surface response functions, enabled by quasi-normal-mode perturbation theory and observations of pronounced nonclassical effects---spectral shifts in excess of 30% and the breakdown of Kreibig-like broadening---in a quintessential multiscale architecture: film-coupled nanoresonators, with feature-sizes comparable to both $L_{text{e}}$ and $lambda$.



قيم البحث

اقرأ أيضاً

Nonlinear optical (NLO) phenomena such as harmonic generation, Kerr, and Pockels effects are of great technological importance for lasers, frequency converters, modulators, switches, etc. Recently, two-dimensional (2D) materials have drawn significan t attention due to their strong and unique NLO properties. Here, we describe an efficient first-principles workflow for calculating the quadratic optical response and apply it to 375 non-centrosymmetric semiconductor monolayers from the Computational 2D Materials Database (C2DB). Sorting the non-resonant nonlinearities with respect to bandgap $E_g$ reveals an upper limit proportional to $E_g^{-4}$, which is neatly explained by two distinct generic models. We identify multiple promising candidates with giant nonlinearities and bandgaps ranging from 0.4 to 5 eV, some of which approach the theoretical upper limit and greatly outperform known materials. Our comprehensive library of ab initio NLO spectra for all 375 monolayers is freely available via the C2DB website. We expect this work to pave the way for highly efficient and compact opto-electronic devices based on 2D materials.
73 - Runze Chen , Chen Li , Yu Li 2020
Magnetic skyrmions have attracted considerable interest, especially after their recent experimental demonstration at room temperature in multilayers. The robustness, nanoscale size and non-volatility of skyrmions have triggered a substantial amount o f research on skyrmion-based low-power, ultra-dense nanocomputing and neuromorphic systems such as artificial synapses. Room-temperature operation is required to integrate skyrmionic synapses in practical future devices. Here, we numerically propose a nanoscale skyrmionic synapse composed of magnetic multilayers that enables room-temperature device operation tailored for optimal synaptic resolution. We demonstrate that when embedding such multilayer skyrmionic synapses in a simple spiking neural network (SNN) with unsupervised learning via the spike-timing-dependent plasticity rule, we can achieve only a 78% classification accuracy in the MNIST handwritten data set under realistic conditions. We propose that this performance can be significantly improved to about 98.61% by using a deep SNN with supervised learning. Our results illustrate that the proposed skyrmionic synapse can be a potential candidate for future energy-efficient neuromorphic edge computing.
We report a self-consistent quasinormal mode theory for nanometer scale electromagnetism where the possible nonlocal and quantum effects are treated through quantum surface responses. With Feibelmans frequency-dependent textit{d} parameters to descri be the quantum surface responses, we formulate the source-free Maxwells equations into a generalized linear eigenvalue problem to define the quasinormal modes. We then construct an orthonormal relation for the modes and consequently unlock the powerful toolbox of modal analysis. The orthonormal relation is validated by the reconstruction of the full numerical results through modal contributions. Significant changes in the landscape of the modes are observed due to the incorporation of the quantum surface responses for a number of nanostructures. Our semi-analytical modal analysis enables transparent physical interpretation of the spontaneous emission enhancement of a dipolar emitter as well as the near-field and far-field responses of planewave excitations in the nanostructures.
This paper presents the design and fabrication of batch-processed cantilever probes with electrical shielding for scanning microwave impedance microscopy. The diameter of the tip apex, which defines the electrical resolution, is less than 50 nm. The width of the stripline and the thicknesses of the insulation dielectrics are optimized for a small series resistance (< 5 W) and a small background capacitance (~ 1 pF), both critical for high sensitivity imaging on various samples. The coaxial shielding ensures that only the probe tip interacts with the sample. The structure of the cantilever is designed to be symmetric to balance the stresses and thermal expansions of different layers so that the cantilever remains straight under variable temperatures. Such shielded cantilever probes produced in the wafer scale will facilitate enormous applications on nanoscale dielectric and conductivity imaging.
Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and small material footprint. Ideally, the material system should allow for chip-integration and room-temperature operation. Two-dimensional materials are highly interesting in this regard. Particularly promising is graphene, which has demonstrated an exceptionally large nonlinearity in the terahertz regime. Yet, the light-matter interaction length in two-dimensional materials is inherently minimal, thus limiting the overall nonlinear-optical conversion efficiency. Here we overcome this challenge using a metamaterial platform that combines graphene with a photonic grating structure providing field enhancement. We measure terahertz third-harmonic generation in this metamaterial and obtain an effective third-order nonlinear susceptibility with a magnitude as large as 3$cdot$10$^{-8}$m$^2$/V$^2$, or 21 esu, for a fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than what we obtain for graphene without grating. Such an enhancement corresponds to third-harmonic signal with an intensity that is three orders of magnitude larger due to the grating. Moreover, we demonstrate a field conversion efficiency for the third harmonic of up to $sim$1% using a moderate field strength of $sim$30 kV/cm. Finally we show that harmonics beyond the third are enhanced even more strongly, allowing us to observe signatures of up to the 9$^{rm th}$ harmonic. Grating-graphene metamaterials thus constitute an outstanding platform for commercially viable, CMOS compatible, room temperature, chip-integrated, THz nonlinear conversion applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا