ﻻ يوجد ملخص باللغة العربية
We give an estimate of the general divided differences $[x_0,dots,x_m;f]$, where some of the $x_i$s are allowed to coalesce (in which case, $f$ is assumed to be sufficiently smooth). This estimate is then applied to significantly strengthen Whitney and Marchaud celebrated inequalities in relation to Hermite interpolation. For example, one of the numerous corollaries of this estimate is the fact that, given a function $fin C^{(r)}(I)$ and a set $Z={z_j}_{j=0}^mu$ such that $z_{j+1}-z_j geq lambda |I|$, for all $0le j le mu-1$, where $I:=[z_0, z_mu]$, $|I|$ is the length of $I$ and $lambda$ is some positive number, the Hermite polynomial ${mathcal L}(cdot;f;Z)$ of degree $le rmu+mu+r$ satisfying ${mathcal L}^{(j)}(z_ u; f;Z) = f^{(j)}(z_ u)$, for all $0le u le mu$ and $0le jle r$, approximates $f$ so that, for all $xin I$, [ big|f(x)- {mathcal L}(x;f;Z) big| le C left( mathop{rm dist} olimits(x, Z) right)^{r+1} int_{mathop{rm dist} olimits(x, Z)}^{2|I|}frac{omega_{m-r}(f^{(r)},t,I)}{t^2}dt , ] where $m :=(r+1)(mu+1)$, $C=C(m, lambda)$ and $mathop{rm dist} olimits(x, Z) := min_{0le j le mu} |x-z_j|$.
In this article, we investigate the multilinear distorted multiplier estimate (Coifman-Meyer type theorem) associated with the Schr{o}dinger operator $H=-Delta + V$ in the framework of the corresponding distorted Fourier transform. Our result is the
By applying the MC algorithm and the Bauer-Muir transformation for continued fractions, in this paper we shall give six examples to show how to establish an infinite set of continued fraction formulas for certain Ramanujan-type series, such as Catalans constant, the exponential function, etc.
We establish partial semigroup property of Riemann-Liouville and Caputo fractional differential operators. Using this result we prove theorems on reduction of multi-term fractional differential systems to single-term and multi-order systems, and prov
Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Lapla
It is proved that for class $A_gamma={qin L_1[0,1]: qgeq 0, int_0^1 q^gamma,dx=1}$, where $gammain (0,1)$, there exists a potential $q_*in A_gamma$ such that minimal eigenvalue $lambda_1(q_*)$ of boundary problem $$ -y+q_*y=lambda y, y(0)=y(1)=0 $$ i