ﻻ يوجد ملخص باللغة العربية
This paper aims to provide a methodology for generating autonomous and non-autonomous systems with a fixed-time stable equilibrium point where an Upper Bound of the Settling Time (UBST) is set a priori as a parameter of the system. In addition, some conditions for such an upper bound to be the least one are provided. This construction procedure is a relevant contribution when compared with traditional methodologies for generating fixed-time algorithms satisfying time constraints since current estimates of an UBST may be too conservative. The proposed methodology is based on time-scale transformations and Lyapunov analysis. It allows the presentation of a broad class of fixed-time stable systems with predefined UBST, placing them under a common framework with existing methods using time-varying gains. To illustrate the effectiveness of our approach, we generate novel, autonomous and non-autonomous, fixed-time stable algorithms with predefined least UBST.
Algorithms having uniform convergence with respect to their initial condition (i.e., with fixed-time stability) are receiving increasing attention for solving control and observer design problems under time constraints. However, we still lack a gener
This paper deals with the convergence time analysis of a class of fixed-time stable systems with the aim to provide a new non-conservative upper bound for its settling time. Our contribution is fourfold. First, we revisit the well-known class of fixe
Constructing differentiation algorithms with a fixed-time convergence and a predefined Upper Bound on their Settling Time (textit{UBST}), i.e., predefined-time differentiators, is attracting attention for solving estimation and control problems under
There is an increasing interest in designing differentiators, which converge exactly before a prespecified time regardless of the initial conditions, i.e., which are fixed-time convergent with a predefined Upper Bound of their Settling Time (UBST), d
Differentiation is an important task in control, observation and fault detection. Levants differentiator is unique, since it is able to estimate exactly and robustly the derivatives of a signal with a bounded high-order derivative. However, the conve