ﻻ يوجد ملخص باللغة العربية
The increasing integration of world economies, which organize in complex multilayer networks of interactions, is one of the critical factors for the global propagation of economic crises. We adopt the network science approach to quantify shock propagation on the global trade-investment multiplex network. To this aim, we propose a model that couples a Susceptible-Infected-Recovered epidemic spreading dynamics, describing how economic distress propagates between connected countries, with an internal contagion mechanism, describing the spreading of such economic distress within a given country. At the local level, we find that the interplay between trade and financial interactions influences the vulnerabilities of countries to shocks. At the large scale, we find a simple linear relation between the relative magnitude of a shock in a country and its global impact on the whole economic system, albeit the strength of internal contagion is country-dependent and the intercountry propagation dynamics is non-linear. Interestingly, this systemic impact can be predicted on the basis of intra-layer and inter-layer scale factors that we name network multipliers, that are independent of the magnitude of the initial shock. Our model sets-up a quantitative framework to stress-test the robustness of individual countries and of the world economy to propagating crashes.
We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multi-agent description leads to study the evolution over time of a system of
We show how the Shannon entropy function can be used as a basis to set up complexity measures weighting the economic efficiency of countries and the specialization of products beyond bare diversification. This entropy function guarantees the existenc
Many real-world networks are coupled together to maintain their normal functions. Here we study the robustness of multiplex networks with interdependent and interconnected links under k-core percolation, where a node fails when it connects to a thres
We study on topological properties of global supply chain network in terms of degree distribution, hierarchical structure, and degree-degree correlation in the global supply chain network. The global supply chain data is constructed by collecting var
Blockchain in supply chain management is expected to boom over the next five years. It is estimated that the global blockchain supply chain market would grow at a compound annual growth rate of 87% and increase from $45 million in 2018 to $3,314.6 mi